
Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Syntactic Parsing:
Introduction, CYK Algorithm

M. Rajman & J.-C. Chappelier

Laboratoire d’Intelligence Artificielle
Faculté I&C

Syntactic parsing: Introduction & CYK Algorithm – 1 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Objectives of this lecture

➥ Introduce syntactic level of NLP
➥ Present its two components: formal grammars and parsing algorithms

Contents:

▶ Introduction
▶ Formal Grammars
▶ Context-Free Grammars
▶ CYK Algorithm

Syntactic parsing: Introduction & CYK Algorithm – 2 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Syntactic level

Analysis of the sentence structure

i.e. "grammatical" analysis (in the linguistic sense)

Automatic natural language processing requires
formal grammars (ressource) and parsing algorithms

Two separated/complementary aspects:

procedural declarative
generic algorithms data
parsing algorithm formal grammar

Syntactic parsing: Introduction & CYK Algorithm – 3 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Parsing

Parsing can be seen as:

▶ RECOGNIZING a sequence of words
➥ Is a given sentence correct or not?

or as

▶ ANALYZING a sequence of words
➥ For a syntactically correct sentence, give the set of all its possible
interpretations (i.e. associated structures).
(Returns the empty set for incorrect sentences)

Syntactic parsing: Introduction & CYK Algorithm – 4 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Syntactic constraints: what is a "correct" word
sequence?

Let’s first play a game...

Consider the following multi-set of 14 words:
{ cat, couch, he, lovely, nice, neighbor, of, on, sat, talked, the, the, the, with }

From such a multi-set, one can derive 14! = 87’178’291’200 (!!) possible sequences...

...most of which do not correspond to any reasonably acceptable sentence :
▶ cat couch he lovely nice neighbor of on sat talked the the the with
▶ he cat the nice lovely the neighbor sat of talked on with the couch
▶ ...

But some do!
Find some of these...

Syntactic parsing: Introduction & CYK Algorithm – 5 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Some possible sentences

Here are some:

▶ the lovely cat of the neighbor he talked with sat on the nice couch
▶ the nice neighbor he sat with talked of the cat on the lovely couch

▶ the neighbor he sat with talked lovely of the cat on the nice couch
▶ the neighbor he sat on talked with the nice couch of the lovely cat

Syntactic parsing: Introduction & CYK Algorithm – 6 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

What is acceptable and what is not?

A sequence of words can be rejected for several different reasons:
▶ the words are not in the “right” order:

cat the on sat the couch nice
☞ the rules defining what are the acceptable word orders in a given language are called

“positional constraints”
▶ related word pairs are not matching “right”:

cats eats mice
☞ the rules defining what are the acceptable word pairs in a given language are called

“selectional constraints” (“agreement rules”)

Syntactic parsing: Introduction & CYK Algorithm – 7 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

What is acceptable and what is not? (2)

It is not enough for a sequence of words to satisfy all positional and selectional
constraints to be acceptable,
see Chomsky’s famous example:

Colorless green ideas sleep furiously.

but the reason is different: the sequence is rejected because it is meaningless;
indeed, how can something colorless be green ?
or a sleep to be furious ?

As this type of problem is related to meaning, it will not be considered here;
we will consider any sequence satisfying all positional and selectional constraints as
acceptable;

to avoid potential confusion, we will refer to such sequences as “syntactically
acceptable”.

Syntactic parsing: Introduction & CYK Algorithm – 8 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Where is the border?

▶ Syntactic acceptability is not as clear cut as one may think!
▶ The underlying hypothesis is that any syntactically acceptable sequence may

possibly be given a meaning, even if this may require some context to guarantee
that a large enough fraction of speakers indeed understand it as intended
(which is crucial for any linguistic entity to be truly useful, but, maybe, in pure
poetry)

▶ For example: What do you understand if one talks about a “small giant”?...

Syntactic parsing: Introduction & CYK Algorithm – 9 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Where is the border? (2)

▶ Now, what do you understand, if “small giant” is included in the following context:
“The sheer size of a company does not guarantee its survival; it must also remain
agile to adapt to rapidly changing economic conditions. As soon as a large
company begins to be hampered by heavy internal procedures, it gradually turns
into a small giant, and represents an easy prey for its competitors.”

▶ However, the situation may become fuzzier, if the required context gets harder to
create:
“giving something to someone” is clear,
“giving something for someone” as well,
but how should we interpret “giving something beyond someone” ?
(see also the forth sentence provided in slide 6)

Syntactic parsing: Introduction & CYK Algorithm – 10 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Positional constraints

As already mentioned, positional constraints govern the word order in a language:

the more such constraints, the more the language tends to be fixed order (e.g. French,
German),

the less, the more it tends to be free order (e.g. Latin, Italian)

For example: in English “girls like roses” is acceptable,

while “girls roses like” or “like girls roses” are not

(and “roses like girls” is acceptable, but means something else);

in Latin, virtually any combination of “puellae rosas amant” is acceptable and means
the same (up to, possibly, a different emphasis)

Syntactic parsing: Introduction & CYK Algorithm – 11 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

How to deal with selectional constraints?

As already mentioned, selectional constraints are taking into account constraints such
as agreement rules that are further restricting the word sequences to be considered as
(syntactically) acceptable

For example, in English “cats eat mice” is acceptable, while “cats eats mice” is not,
because the number agreement between “cats” (plural) and “eats” (singular) is violated.

Agreement rules can be taken into account by preserving the required
morpho-syntactic features in the PoS tags assigned to words (e.g. a number
agreement will require to use PoS tags such as NOUNs (noun singular), NOUNp (noun
plural), VERBs (verb singular), and VERBp (verb plural).

Syntactic parsing: Introduction & CYK Algorithm – 12 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

What formalism?

▶ symbolic grammars / statistical grammars

▶ symbolic grammars:
▶ phrase-structure grammars (a.k.a constituency grammars, syntagmatic grammars)

recursively decompose sentences into constituents, the atomic parts of which are
words ("terminals").
Well suited for ordered languages, not adapted to free-order languages.
Better express structural dependencies (typically positional constraints).

▶ dependency grammars focus on words and their relations (not necessarily in
sequence):
describe functional dependencies between words (e.g. subject–verb relation).
More lexically oriented.
Dependency grammars provide simpler structures (with less nodes, 1 for each word,
and less deep), less rich than phrase-structure grammars
Better express relations (typically selection constraints).

☞ Modern approach: combine both

Syntactic parsing: Introduction & CYK Algorithm – 13 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Formal phrase-structure grammars
A formal phrase-structure grammar G is defined by:
▶ A finite set C of “non-terminal” symbols syntactic categories
▶ A finite set L of “terminal” symbols words
▶ The upper level symbol S ∈ C the “sentence”
▶ A finite set R of rewriting rules syntactic rules

R⊂ C+× (C∪L)∗

Example of rewriting rule:
for X1, X2, Y1, Y2, Z in C and w in L, (X1 Z X2,w Y1 Y2) is in R:
▶ means that the sequence X1 Z X2 can be rewritten into w Y1 Y2
▶ that rule is usually written as: X1 Z X2 −→ w Y1 Y2

In the NLP field, the following concepts are also introduced:
▶ pre-terminal symbols or Part of Speech tags T ⊂ C

▶ lexical rules: T −→ w for T ∈ T and w ∈ L
Syntactic parsing: Introduction & CYK Algorithm – 14 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

What kind of grammar for NLP?
Reminder: Chomsky’s Hierarchy: complexity is related to the shape of the rules

language
class

rule shape and
grammar type

recognizer complexity

regular X → w or
X → w Y
(type 3)

FSA O(n)

embeddings context-free X → Y1 ...Yn
(type 2)

PDA O(n3)

crossings context-
dependent

α → β |α| ≤ |β |
(type 1)

Turing ma-
chine

exp.

recursively
enumerable

α → β (type 0) undecidable

embedding: “The bear the dog belonging to the hunter my wife was a friend of bites howls”

crossing: “Diamonds, emeralds, amethysts are respectively white, green and purple”

Syntactic parsing: Introduction & CYK Algorithm – 15 / 47



Introduction

Syntax
Syntactic level and
Parsing

Syntactic
acceptability

Formalisms

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

What kind of grammar for NLP? (2)

real-life NLP constraints ⇒ important limitations on complexity
☞ algorithms at most polynomial time complex

Worst-case complexity of parsing grammar types:

regular and LR(k) : O(n)
context-free : O(n3)
tree-adjoining grammars : O(n6)
more complex models : exp.ex

pr
es

si
ve

po
w

er

al
go

rit
hm

ic
co

m
pl

ex
ity

⇒ the right tradeoff between expressive power and algorithmic complexity must be
found
models actually used: context-free grammars (or mildly context-sensitive grammars)

In practice, higher level description formalisms might be used for developing the
grammars, which are afterwards translated into CFG for practical use (“CF backbone”).

Syntactic parsing: Introduction & CYK Algorithm – 16 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Context-Free Grammars

A Context-Free Grammar (CFG) G is (in the NLP framework) defined by:
▶ a set C of syntactic categories (called "non-terminals")
▶ a set L of words (called "terminals")
▶ an element S of C, called the top level category, corresponding to the category

identifying complete sentences
▶ a proper subset T of C, which defines the morpho-syntactic categories or

“Part-of-Speech tags” (a.k.a “pre-terminals”)
▶ a set R of rewriting rules, called the syntactic rules, of the form:

X → X1 X2 ...Xn

where X ∈ C\T and X1...Xn ∈ C

▶ a set L of rewriting rules, called the lexical rules, of the form:

X → w

where X ∈ T and w is a word of the language described by G.
L is indeed the lexicon

Syntactic parsing: Introduction & CYK Algorithm – 17 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

A simplified example of a Context-Free Grammar

terminals: a, cat, ate, mouse, the
PoS tags: N, V, Det

non-terminals: S, NP, VP, N, V, Det
syntactic rules:

R1: S→ NP VP
R2: VP → V
R3: VP → V NP
R4: NP → Det N

lexical rules:
L1: N → cat
L2: Det → the
L3: Det → a
L4: N → mouse
L5: V → ate

Syntactic parsing: Introduction & CYK Algorithm – 18 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Syntactically Correct

A word sequence is syntactically correct (according to G) ⇐⇒ it can be derived from
the upper symbol S of G in a finite number of rewriting steps corresponding to the
application of rules in G.

Notation: S ⇒∗ w1...wn

An elementary rewriting step is noted: α ⇒ β ;
several consecutive rewriting steps: α ⇒∗ β with α and β ∈ (C∪L)∗

Example: if, as rules, we have X → a, Y → b and Z → c, then for instance:
X Y Z ⇒ aYZ and X Y Z ⇒∗ abc

Any sequence of rules corresponding to a possible way of deriving a given sentence
W = w1...wn is called a derivation of W .

The set (not necessarily finite) of syntactically correct sequences (according to G) is by
definition the language recognized by G

Syntactic parsing: Introduction & CYK Algorithm – 19 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Example
The sequence “the cat ate a mouse” is syntactically correct (according to the former
example grammar)

S
R1⇒ NP VP
R4⇒ Det N VP
L2⇒ the N VP
L1⇒ the cat VP
R3⇒ the cat V NP
L5⇒ the cat ate NP
R4⇒ the cat ate Det N
L3⇒ the cat ate a N
L4⇒ the cat ate a mouse

Its derivation is (R1,R4,L2,L1,R3,L5,R4,L3,L4)

Syntactic parsing: Introduction & CYK Algorithm – 20 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Example (2)

The sequence “ate a mouse the cat” is syntactically wrong (according to the former
example grammar)

S
R1⇒ NP VP
R4⇒ Det N VP

none⇒ ate N VP

Exercise : Colorless green ideas sleep furiously

Syntactically correct ̸= Semantically correct

Syntactic parsing: Introduction & CYK Algorithm – 21 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Syntactic tree(s) associated with a sentence

Each derivation of a sentence W can be represented graphically in the form of a tree in
which each rewriting rule is represented as a sub-tree of depth 1: the root (resp. the
leaves) corresponds (resp. correspond) to the left-hand side (resp. the right-hand side)
of the rule.

(...,Ri , ...) with Ri : X → Y1 ... Yk ⇒

...

...

X

Yk...Y1...

Such a tree will be called a syntactic tree (or parse tree, or syntactic structure)
associated to W by G.

Syntactic parsing: Introduction & CYK Algorithm – 22 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Syntactic tree(s) associated with a sentence

Example: the derivation (R1,R4,L2,L1,R3,L5,R4,L3,L4) is represented by the following
syntactic tree:
(rule numbers (in blue) are usually not represented on the tree)

S

VP

NP

N

mouse
L4

Det

a
L3

R4

V

ate

L5

R3

NP

N

cat

L1

Det

the

L2

R4

R1

Syntactic parsing: Introduction & CYK Algorithm – 23 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Mapping between trees and derivations

A priori, several derivations can correspond to the same tree

Example (“the cat ate a mouse”): R1,R4,L2,L1,R3,L5,R4,L3,L4 (where the NP is
derived before the VP) and R1,R3,L5,R4,L3,L4,R4,L2,L1 (where the VP is derived
before the NP) correspond to the same tree

However, if, by convention, derivations are restricted to left-most derivations (i.e.
derivations where rewriting rules are exclusively applied to the left-most non-terminal),
there is a one-to-one mapping between derivations and parse trees.

Warning ! This is not true in general for grammars more complex than context-free
grammars.

This property is one of the important properties of the CF grammars and will be used
for their probabilization.

Syntactic parsing: Introduction & CYK Algorithm – 24 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Syntactic ambiguity

One of the major characteristics of natural languages (in opposition to formal
languages) is that they are inherently ambiguous at every level of analysis.

For example, at the syntactic level:
▶ words are often associated with several parts-of-speech (for example “time” can

be a verb or a noun).
This can lead to multiple syntactic interpretations corresponding to global
structural ambiguities.
Example: Time flies like an arrow

▶ word attachments are often not completely constrained at syntactic level.
This can lead to multiple syntactic interpretations corresponding to more local
structural ambiguities.
Example: She ate a fish with a fork

Syntactic parsing: Introduction & CYK Algorithm – 25 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Examples of syntactic ambiguities

She ate a fish with a fork/bone

S

VP

PNP

NP

N

fork

Det

a

Prep

with

VP

NP

N

fish

Det

a

V

ate

Pron

She

S

VP

NP

PNP

NP

N

fork

Det

a

Prep

with

NP

N

fish

Det

a

V

ate

Pron

She

Syntactic parsing: Introduction & CYK Algorithm – 26 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Syntactic ambiguity (2)

As the syntactic ambiguity of a given sentence W will be expressed through the
association to W of several syntactic structures,

grammars used to describe natural languages need to be ambiguous.

This corresponds to a major difference with the grammars that are usually used for
formal languages (e.g. programming languages) and have fundamental consequences
on the algorithmic complexity of the parsers (i.e. syntactic analyzers) that are
designed for Natural Language Processing.

Syntactic parsing: Introduction & CYK Algorithm – 27 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Syntactic parsing

One of the main advantages of the CFG formalism is that there exist several generic
parsing algorithms that can recognize/analyze sentences in a computationally very
efficient way (low polynomial worst case complexity).

efficient == O(n3) worst case complexity

The two most famous of such algorithms are:
▶ the CYK (Cocke-Younger-Kasami) algorithm (first proposed in the early 60’s)
▶ and the Earley parser (late 60’s)

Input Output Resource

sentence
{

trees (analyser)
yes/no (recognizer) CFG

Syntactic parsing: Introduction & CYK Algorithm – 28 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

The CYK algorithm

CYK is a bottom-up chart parsing algorithm characterized by 3 interesting features:
▶ its worst case parsing complexity is O(n3) (where n is the number of words of the

sentence to be analyzed);
▶ a very simple algorithm that is easy to implement;
▶ it can provide partial analysis of syntactically correct subsequences of syntactically

incorrect sequences.

However, its standard implementation suffers from two important drawbacks:
▶ the CF grammar used by the parser has to be in a predefined format (the

[extended] Chomsky normal form) and therefore the grammar usually needs to be
first converted into this predefined format;

▶ the complexity is always O(n3) even when the grammer is in fact regular.

Syntactic parsing: Introduction & CYK Algorithm – 29 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

CYK algorithm: basic principles

As it is usual for chart parsing algorithms, the CYK algorithm will compute in an
efficient way all the possible syntactic interpretations of all the sub-sequences of
the sequence to be analyzed.

Subsequences interpretations are built in a bottom-up fashion, using the rules present
in the grammar.

ZY

wi jk
w w w

k+1

+ X → YZ ☞

ZY

X

wi jk
w w w

k+1

How to prevent the space of possible combinations of subsequences from exploding?
➥ Binarization (of the combinations) ☞ Restrict the types of CFG’s allowed.

Syntactic parsing: Introduction & CYK Algorithm – 30 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Chomsky Normal Form

Any context-free grammar can be converted into an equivalent Chomsky Normal
Form (CNF) grammar

A CFG is in CNF if all its syntactic rules are of the form:

X → X1 X2

where X ∈ C\T and X1, X2 ∈ C

A context-free grammar is in extended Chomsky Normal Form (eCNF) if all its
syntactic rules are of the form:

X → X1 or X → X1 X2

where X ∈ C\T and X1, X2 ∈ C

Syntactic parsing: Introduction & CYK Algorithm – 31 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

Chomsky normal form: example

R1: S → NP VP R1: S → NP VP
R2: NP → Det N R2: NP → Det N
R3: NP → Det N PNP R3.1: NP → X1 PNP

R3.2: X1 → Det N
R4: PNP → Prep NP R4: PNP → Prep NP
R5: VP → V
R6: VP → V NP R6: VP → V NP
R7: VP → V NP PNP R7.1: VP → X2 PNP

R7.2: X2 → V NP
L5: V → ate L5.1: V → ate

L5.2: VP → ate

☞ increases the number of non-terminals and the number of rules

Syntactic parsing: Introduction & CYK Algorithm – 32 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

CYK algorithm: basic principles (2)

The algorithmically efficient organization of the computation is based on the following
property:

if the grammar is in CNF (or in eCNF) the computation of the syntactic interpretations
of a sequence W of length n only requires the exploration of all the decompositions of
W into exactly two sub-subsequences, each of them corresponding to a cell in a chart.
The number of pairs of sub-sequences to explore to compute the interpretations of W
is therefore n−1.

Idea: put all the analyses of sub-sequences in a chart.

Syntactic parsing: Introduction & CYK Algorithm – 33 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL
M. Rajman & J.-C. Chappelier

CYK algorithm: basic principles (3)
The syntactic analysis of an n-word sequence W = w1...wn is organized into a
half-pyramidal table (or chart) of cells Ci ,j (1 ≤ i ≤ n, 1 ≤ j ≤ n), where the cell Ci ,j
contains all the possible syntactic interpretations of the sub-sequence wj ...wj+i−1 of i
words starting with the j-th word in W .

X ∈ Cij

wj wj+i−1· · ·

X

:

The computation of the syntactic interpretations proceeds row-wise upwards
(i.e. with increasing values of i).

Syntactic parsing: Introduction & CYK Algorithm – 34 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

CYK Algorithm: principle

8 S

7

6 VP, X2

5 S NP

4

3 S VP, X2 PNP

2 NP, X1 NP, X1 NP, X1

1 Det N V, VP Det N Prep Det N

i/j 1 2 3 4 5 6 7 8

the cat ate a mouse in the garden

Syntactic parsing: Introduction & CYK Algorithm – 35 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Formal algorithm

1) Initialisation: fill first row with corresponding Part-of-Speech

2) Fill chart:

k

k

Z

X

Y

for all 2 ≤ i ≤ n (row) do
for all 1 ≤ j ≤ n− i +1 (column) do
for all 1 ≤ k ≤ i −1 (decomposition) do
for all X ∈ chart[i −k ][j] do
for all Y ∈ chart[k ][i + j −k ] do
for all Z → X Y ∈ R do
Add Z to chart[i][j]

for all X ∈ chart[i][j] do
for all Y → X ∈ R do
Add Y to chart[i][j]

Syntactic parsing: Introduction & CYK Algorithm – 36 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Analyzer or recognizer?

▶ The preceding algorithm does not store the parse trees.
➥ Recognizer (check whether S is in top cell or not) or, for an analyser, need to
reconstruct the parse trees.

▶ For an analyzer, it’s definitely better to store the parse trees in the chart while
parsing:
Extend
Add Z to chart[i][j]
with
Add pointers to X and Y to the interpretations of Z in chart[i][j]

Syntactic parsing: Introduction & CYK Algorithm – 37 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

CYK algorithm: worst case complexity

As the computation of the syntactic interpretations of a cell Ci ,j requires (i −1)
explorations of pairs of cells (1 ≤ k ≤ i −1), the total number of explorations is
therefore

n

∑
i=2

n−i+1

∑
j=1

(i −1) =
n

∑
i=2

(n− i +1).(i −1) ∈ O(n3)

A cell contains at most as many interpretations as the number |C| of syntactic
categories contained in the grammar, the worst case cost of an exploration of a pair of
cells corresponds therefore to |C|2 accesses to the grammar.

Syntactic parsing: Introduction & CYK Algorithm – 38 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Complexity (2)

As cost of the access to the rules in the grammar can be made constant if efficient
access techniques (based on hash-tables for example) are used, the worst case
computational complexity of the analysis of a sequence of length n is:

O(n3) and O(|C|2)

We can here see one drawback of the CNF: C is increased.

There are modified versions of the CYK algorithm where CNF is no longer required (☞
C is then smaller): bottom-up chart parsing

Notice: once the chart has been filled (O(n3) complex), one parse tree of the input
sentence can be extracted in O(n).

Syntactic parsing: Introduction & CYK Algorithm – 39 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Complexity (3)

PITFALL!! It is easy to implement this algorithm in such a way that the complexity
becomes O(expn)!

If indeed the non-terminals produced in a cell are duplicated (instead of factorizing
their interpretations), their number can become exponential!

Example: S -> S S S -> a

S S S S S

S S S S

S S S

S S S S

a a a a

EXPONENTIAL

S: •, •, •

S: •, • S: •, •

S: • S: • S: •

S: • S: • S: • S: •

a a a a

CUBIC

Syntactic parsing: Introduction & CYK Algorithm – 40 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Beyond CNF: bottom-up chart parting

Idea: get rid of (e)CNF constraint

How to?

☞ on-line binarization, when needed, during bottom-up analysis

Mainly:
▶ factorize (with respect to α) all the partial derivations X → α •β ☞ α • ...

This is possible because processing bottom-up.

[ α and β are (non-empty) sequences of non-terminals. ]

Syntactic parsing: Introduction & CYK Algorithm – 41 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Bottom-up Chart Parsing
More formally, a CYK algorithm in which:
▶ cells contain two kind of objects:

[α • ..., i , j] and [X , i , j] respectively

▶ initialization consists in adding [X , i , j] for all X → wij ∈ R

(wij is a sequence of tokens of the input sentence;
see "Dealing with compounds" later slide)

▶ and the completion phase becomes:
(association of two cells)

[α • ..., i , j]⊕ [X ,k , j + i]⇒

 [α X • ..., i +k , j] if Y → α Xβ ∈ R

[Y , i +k , j] if Y → α X ∈ R

("self-filling")

[X , i , j]⇒

 [X • ..., i , j] if Y → Xβ ∈ R

[Y , i , j] if Y → X ∈ R

Syntactic parsing: Introduction & CYK Algorithm – 42 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Bottom-up Chart Parsing: illustration

Initialization:
N N

......Det ...Det

The hatedog the cat

catthehateThe dog

VDet

Det N V Det N

V

DetVP

Completion:

k

k

α • · · ·

αX • · · ·

X

Y

Syntactic parsing: Introduction & CYK Algorithm – 43 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Bottom-up Chart Parsing: Example

N N

V ...Det ... Det ...

cattheThe crocodile ate

VDet Det

... ...

S

S

NP

NP

NP

NP

NP

VP

Syntactic parsing: Introduction & CYK Algorithm – 44 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Dealing with compounds

Example on how to deal with compouds during initialization phase:

N

N

credit card

NV

Syntactic parsing: Introduction & CYK Algorithm – 45 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

Keypoints

➟ Role of syntactic analysis is to recognize a (correct) sentence and to produce its
structure(s)

➟ Different types of formal grammars, relation between description power and time
constraints

➟ CYK algorithm, its principles and complexity

Syntactic parsing: Introduction & CYK Algorithm – 46 / 47



Introduction

Syntax

Context-Free
Grammars

CYK Algorithm

©EPFL

M. Rajman & J.-C. Chappelier

References

[1] D. Jurafsky & J. H. Martin, Speech and Language Processing, chap. 12, 13, and
16, Prentice Hall, 2008 (2nd ed.).

[2] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language
Processing, chap. 3, MIT Press, 2000

[3] N. Indurkhya and F. J. Damerau editors, Handbook of Natural Language
Processing, chap. 4, CRC Press, 2010 (2nd edition)

Syntactic parsing: Introduction & CYK Algorithm – 47 / 47


	Introduction
	Syntax
	Syntactic level and Parsing
	Syntactic acceptability
	Formalisms

	Context-Free Grammars
	CYK Algorithm

