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Next few weeks!

• Today: Deep Learning for Natural Language Processing 

• In two weeks: Neural Text Generation 

• Final week: Modern NLP & Ethical Implementation of NLP



Today’s Outline

• Introduction 

• Section 1 - Neural NLP & Word Embeddings 

• Section 2 - Recurrent Neural Networks for Sequence Modeling 

• Section 3 - Attentive Neural Modeling with Transformers 

• Exercise Session:  Attention in Transformer Language Models



Part 1: Neural Embeddings



Section Outline

• New: Building our first neural classifier 

• Review: sparse word vector representations 

• New: Learning dense word vector representations - CBOW & Skipgram



A simple NLP model
• How do we represent natural language sequences for NLP problems?

Model

I really enjoyed the movie we watched on Saturday!

+/-



A simple NLP model
• How do we represent natural language sequences for NLP problems?

Model

I really enjoyed the movie we watched on Saturday!

+/-

…

In neural natural  
language processing, 
words are vectors! 



Question

13

What words should we model as vectors?



Choosing a vocabulary
• Language contains many words (e.g., ~600,000 in English) 

- What about other tokens: Capitalisation? Accents ? Typos!? Words in other languages!? In other 
scripts!? Emojis !? Unicode !? 

- Millions of potential unique tokens! Most rarely appear in our training data (Zipfian distribution)  

- Model has limited capacity

14
https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words



Choosing a vocabulary
• Language contains many words (e.g., ~600,000 in English) 

- What about other tokens: Capitalisation? Accents ? Typos!? Words in other languages!? In other 
scripts!? Emojis !? Unicode !? 

- Millions of potential unique tokens! Most rarely appear in our training data (Zipfian distribution)  

- Model has limited capacity 

• How should we select which tokens we want our model to process? 

- CS-552: Modern NLP Week 13 - Tokenisation! 

- For now, initialize a vocabulary V of tokens that we can represent as a vector 

- Any token not in this vocabulary V is mapped to a special <UNK> token (e.g., unknown).

15
https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words



Question
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How should we model a word as a vector?



Sparse Word Representations

• Define a vocabulary V 

• Each word in the vocabulary is 
represented by a sparse vector 

• Dimensionality of sparse vector is 
size of vocabulary (e.g., thousands, 
possibly millions)

I  

really  

enjoyed  

the  

movie  

! 

wi ∈ {0,1}V

[ 0 … 0 0 0 1 … 0 0 ] 

[ 0 … 1 … 0 0 0 0 0 ]  

[ 0 … 0 0 0 1 0 … 0 ]  

[ 0 … 0 1 0 0 0 … 0 ] 

[ 0 … 0 0 0 0 0 … 1 ] 

[ 1 … 0 0 0 0 0 0 0 0]



Word Vector Composition
• To represent sequences, beyond words, define a composition function over 

sparse vectors

I really enjoyed the movie ! [ 1 … 1 1 0 1 … 0 1 ]

I really enjoyed the movie ! [ 0.01 … 0.1 0.1 0 0.001 … 0 0.5 ]

Simple 
Counts

Weighted by  
Corpus Statistics 

(e.g., TF-IDF)

Many others…



Problem

With sparse vectors, similarity is a function of common words! 

How do you learn learn similarity between words? 

enjoyed 

loved

[ 0 … 0 0 0 1 … 0 0 ] 

[ 0 … 1 … 0 0 0 0 0 ] 

sim( enjoyed, loved ) = 0



Embeddings Goal

How do we train semantics-encoding embeddings of words?

Image Credit: https://towardsdatascience.com/legal-applications-of-neural-word-embeddings-556b7515012f



Dense Word Vectors
• Represent each word as a high-dimensional*, real-valued vector 

- *Low-dimensional compared to V-dimension sparse representations, but still usually O(102 - 103) 

• Similarity of vectors represents similarity of meaning for particular words

I  

really  

enjoyed  

the  

movie  

! 

[ 0.113  -0.782  1.893  0.984  6.349  … ] 

[ 0.906  0.661  -0.214  -0.894  -0.880  … ]  

[ -0.842  0.647  -0.882  0.045  0.029  … ]  

[ 0.100  0.765  -0.333  -0.538  -0.150  … ] 

[ 0.104  -0.054  -0.268  -0.877  0.005  … ] 

[ 0.439  -0.577  -0.727  0.261  0.699  … ]

word vectors      

word embeddings     

neural embeddings    

dense embeddings  

others…  



A simple NLP model
• For each sequence , we have a corresponding sequence of embeddings  

• Embeddings  are indexed from shared embedding dictionary  for all 
items in vocabulary 

S X

xt ∈ X 𝔼
V

22

I really enjoyed the movie we watched on Saturday!

…

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT



A simple NLP model
• For each sequence , we have a corresponding sequence of embeddings  

• Embeddings  are indexed from shared embedding dictionary  for all 
items in vocabulary 

S X

xt ∈ X 𝔼
V

23

I really enjoyed the movie we watched on Saturday !

…

S1 =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT

We really loved a film we saw last Sunday !S2 =
Bolded words would index 
the same embedding in 𝔼



A simple NLP model
• For each sequence , we have a corresponding sequence of embeddings S X

24

Model

I really enjoyed the movie we watched on Saturday!

…
We have our word 

embeddings!

Now what?

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT



Question

25

What should we use as a model?



A simple NLP model
• Our model modifies and / or composes these word embeddings to 

formulate a representation that allows it to predict the correct label

26

Model

I really enjoyed the movie we watched on Saturday!

+/-

…

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT



A simple NLP model
• Our model modifies and / or composes these word embeddings to 

formulate a representation that allows it to predict the correct label 

- Recurrent neural networks (RNNs) - Today! 

- RNN variants (LSTM, GRU, etc.) - Today! 

- Transformer - Today!

27



A simple NLP model

28

Sum-pool

I really enjoyed the movie we watched on Saturday!

+/-

…

We composed our embeddings 
into a different representation!

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT

Notation: Typically, we represent 
the output of a model as h (or o) .

hT =
T

∑
t=0

xt



Question

29

How do we convert the output of our model to a prediction?



Predicting the label

30

Sum-pool

I really enjoyed the movie we watched on Saturday!

+/-

…

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT

hT =
T

∑
t=0

xt



Predicting the label
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Sum-pool

I really enjoyed the movie we watched on Saturday!

+/-

…

S =

X = {x0 , x1 , . . . , xT}

x0 x1 xT−1 xT

hT =
T

∑
t=0

xt

Logistic Regression P(y) = σ(Wo hT)Use  as the input features to a 
classification algorithm!
hT

Learn using 
backpropagation: 

compute gradients of 
loss with respect to 

initial embeddings X 

Learn embeddings 
that allow you to do 
the task successfully! 



Question

32

What could be a better way to learn word embeddings?



–J.R. Firth, 1957

“You shall know a word by the company it keeps” 



Context Representations

I really enjoyed the ____ we watched on Saturday!
The ___ growled at me, making me run away.

I need to go to the ____ to pick up some dinner.

Solution:  

Rely on the context in which words occur to learn their meaning 

Foundation of distributional semantics

Context is the set of words that occur nearby



Learning Word Embeddings
• Many options, huge area of research, but three common approaches 

• Word2vec - Continuous Bag of Words (CBOW) 

- Learn to predict missing word from surrounding window of words 

• Word2vec - Skip-gram 

- Learn to predict surrounding window of words from given word 

• GloVe 

- Not covered today

(Mikolov et al., 2013a; 2013b; Pennington et al., 2014)



Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

enjoyed the we watched

Projection

Sum 

_____

movie

Context:

(Mikolov et al., 2013a)



Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

enjoyed the we watched

Projection

Sum 

_____

movie

max P(movie |enjoyed, the, we, watched)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt |wt−2, wt−1, wt+1, wt+2)

max P(wt |{wx}x=t+2
x=t−2)

(Mikolov et al., 2013a)



Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

U ∈ ℝd×Vwx ∈ ℝ1×d

enjoyed the we watched

Projection

Sum 

_____

movie
P(wt |{wx}x=t+2

x=t−2) = softmax(U
t+2

∑
x = t − 2

x ≠ t

wx)

Projection

(Mikolov et al., 2013a)



Softmax Function
• The softmax function generates a probability distribution from the 

elements of the vector it is given

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

softmax(a)i =
eai

∑|a|
j=1 eaj

V = [ 0.790  -0.851  0.506  0.767  -0.788  0.793  0.887  0.219  -0.052  0.461 ] 

P(V) = [ 0.144  0.028  0.108  0.141  0.030  0.144  0.159  0.081  0.062  0.104 ]  

Softmax(V)



Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

U ∈ ℝd×Vwx ∈ ℝ1×d

enjoyed the we watched

Projection

Sum 

_____

movie
P(wt |{wx}x=t+2

x=t−2) = softmax(U
t+2

∑
x = t − 2

x ≠ t

wx)

Projection

(Mikolov et al., 2013a)



Continuous Bag of Words (CBOW)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyed the we watched

Projection

Sum 

_____

movie

P(wt |{wx}x=t+2
x=t−2) = softmax(U

t+2

∑
x = t − 2

x ≠ t

wx) • Model is trained to maximise the 
probability of the missing word 

- For computational reasons, the model is 
typically trained to minimise the negative 
log probability of the missing word 

• Here, we use a window of N=2, but 
the window size is a hyperparameter  

• For computational reasons, a 
hierarchical softmax used to 
compute distribution

(Mikolov et al., 2013a)



Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

Projection

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

Context:

(Mikolov et al., 2013b)



Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

max log P(wt−2, wt−1, wt+1, wt+2 |wt)

max (log P(wt−2 |wt) + log P(wt−1 |wt)

+log P(wt+1 |wt) + log P(wt+2 |wt))
Projection

(Mikolov et al., 2013b)

Context:



max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

P(wx |wt) = softmax(Uwt)

U ∈ ℝd×Vwt ∈ ℝ1×d
Projection

Projection

(Mikolov et al., 2013b)

Context:



max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

• Model is trained to minimise the 
negative log probability of the 
surrounding words 

• Here, we use a window of N=2, but the 
window size is a hyperparameter to set 

• Typically, set large window (N=10), but 
randomly select  as dynamic 
window size so that closer words 
contribute more to learning

i ∈ [1,N]

Projection

(Mikolov et al., 2013b)

Context:



Question

What is the major conceptual difference between the CBOW  
and Skipgram methods for training word embeddings?



max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram vs. CBOW
• Question: Do you expect a difference between what is learned by CBOW 

and Skipgram methods?

Projection

enjoyed the we watched

Projection

Sum 

_____

movie

(Mikolov et al., 2013b) (Mikolov et al., 2013a)



Example

48

CBOW Skip-gram



Recap

• Neural NLP: Words are vectors! 

• Word embeddings can be learned in a self-supervised manner from large 
quantities of raw text 

• Two algorithms: Continuous Bag of Words (CBOW) and Skip-gram



Resources
• word2vec: https://code.google.com/archive/p/word2vec/ 

• GloVe: https://nlp.stanford.edu/projects/glove/ 

• FastText: https://fasttext.cc/ 

• Gensim: https://radimrehurek.com/gensim/

50

https://fasttext.cc/
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Part 3: Attentive Neural 
Modeling with Transformers



Section Outline

• Background: Long-range Dependency Modeling 

• Content: Attention, Self-Attention, Multi-headed Attention, Transformer 
Blocks, Transformers 

• Exercise Session: Visualizing Transformer Attention



Issue with Recurrent Models
• Multiple steps of state overwriting makes it challenging to learn long-

range dependencies. 

• Nearby words should affect each other more than farther ones, but RNNs 
make it challenging to learn any long-range interactions

They tuned, discussed for a moment, then struck up a lively 
jig. Everyone joined in, turning the courtyard into an even 
more chaotic scene, people now dancing in circles, swinging 
and spinning in circles, everyone making up their own dance 
steps. I felt my feet tapping, my body wanting to move. 
Aside from writing, I ’ve always loved dancing .

LAMBADA dataset, 2016



Toy Example
• The model sees 4 extra tokens: 

“m’”, “appelle”, “Antoine”, 
<START> before generating the 
“I” correspond to “Je”

Decoder 
RNN

Decoder 
RNN

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Decoder 
RNN

Decoder 
RNN

y0 ̂y1 ̂y2 ̂y3

m’ appelle AntoineJe <START> am AntoineI

am AntoineI <END>

(Sutskever et al., 2014)



Toy Example

Decoder 
RNN

Decoder 
RNN

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Decoder 
RNN

Decoder 
RNN

y0 ̂y1 ̂y2 ̂y3

m’ appelle AntoineJe <START> am AntoineI

am AntoineI <END>

(Sutskever et al., 2014)

How can we reduce this temporal 
bottleneck ? 

• The model sees 4 extra tokens: 
“m’”, “appelle”, “Antoine”, 
<START> before generating the 
“I” correspond to “Je”



Attentive Encoder-Decoder Models

• Recall: At each encoder 
time step, there is an 
output of the RNN!

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

x2 x3 x4x1 y0
(Bahdanau et al., 2015)

he
1 he

2 he
3 he

4

hd
1



Attentive Encoder-Decoder Models

• Recall: At each encoder 
time step, there is an 
output of the RNN! 

• Idea: Use the output of the 
Decoder LSTM to compute 
an attention (i.e., a mixture) 
over all the outputs of the 
encoder LSTM 

• Intuition: focus on different 
parts of the input at each 
time step

he
t

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Attention

x2 x3 x4x1 y0

̂y1

(Bahdanau et al., 2015)

he
1 he

2 he
3 he

4



What is attention?
• Attention is a weighted average over a set of inputs 

• How should we compute this weighted average?

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Decoder 
RNN

he
2 he

3 he
4he

1 hd
1

he
t = encoder output hidden states



• Compute pairwise similarity between each encoder hidden state and 
decoder hidden state (“idea of what to decode”)

Attention Function

he
t = encoder output hidden states hd

t = decoder output hidden state

Also known as a “query”Also known as a “keys”

he
1 he

2 he
3 he

4



• Compute pairwise similarity between each encoder hidden state and 
decoder hidden state (“idea of what to decode”) 

• We have a single query vector for multiple key vectors

Attention Function

he
t = encoder output hidden states hd

t = decoder output hidden state

he
1 hd

1

,( )fa1 = 

he
2 hd

1

,( )fa2 = 

he
3 hd

1

,( )fa3 = 

Also known as a “query”Also known as a “keys”

he
4 hd

1

,( )fa4 = 



Attention Function
• Pairwise scores can be computed using a variety of functions

Attention Function Formula

Multiplicative

Linear

Scaled Dot Product

a = heWhd

a = vTϕ(W[he; hd])

a =
(Whe)T(Uhd)

d



Attention Function
• Compute pairwise similarity between each encoder hidden state and 

decoder hidden state (“idea of what to decode”) 

• Convert pairwise similarity scores to probability distribution (using 
softmax!) over encoder hidden states and compute weighted average:

he
1 hd

1

,( )f
he

2 hd
1

,( )f
he

3 hd
1

,( )fa1 = a2 = a3 = 

αt =
eat

∑j eajSoftmax! Here  is known  
as the “value”

he
th̃d

1 =
T

∑
t=1

αthe
t

αt



Attentive Encoder-Decoder Models

• Intuition:  contains 
information about hidden 
states that got high 
attention 

• Typically,  is concatenated 
(or composed in some other 
manner) with  (the original 
decoder state) before being 
passed to the output layer 

• Output layer predicts the 
most likely output token 

h̃d
1

h̃d
1

hd
1

̂y1

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Attention

x2 x3 x4x1 y0

̂y1

h̃d
1

he
1 he

2 he
3 he

4

(Bahdanau et al., 2015)

Output

hd
1

[hd
1 ; h̃d

1]

h̃d
1 =

T

∑
t=1

αthe
t

αt



Attentive Encoder-Decoder Models

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Attention

Decoder 
LSTM

Attention

x2 x3 x4x1 y0

̂y2

̂y1

he
1 he

2 he
3 he

4

(Bahdanau et al., 2015)

̂y1

Output Output

Repeat in 
next time step 
to get new 
distribution 
over states

αt

Attention distribution 
changes at next time step

h̃d
2

hd
2

[hd
2 ; h̃d

2]



Attentive Encoder-Decoder Models

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Attention

Decoder 
LSTM

Attention

x2 x3 x4x1 y0 ̂y1

Attention

Decoder 
LSTM

̂y3

̂y2

he
1 he

2 he
3 he

4

(Bahdanau et al., 2015)

̂y2̂y1

Output Output Outputαt

and the next one…

h̃d
3

hd
3

[hd
3 ; h̃d

3]

And so 
forth…



Attention Recap
• Main Idea: Decoder computes a weighted sum of encoder outputs 

• Compute pairwise score between each encoder hidden state and initial 
decoder hidden state 

• Many possible functions for computing scores (dot product, bilinear, etc.) 

• Temporal Bottleneck Fixed! Direct connection between decoder and 
ALL encoder states

he
t = encoder output hidden states hd

t = decoder initial hidden state



Question

Do any other inefficiencies remain in our 
sequence to sequence pipelines? 



Encoder is still Recurrent
• Encoder: Recurrent functions can’t be parallelized because previous state 

needs to be computed to encode next one 

• Problem: Encoder hidden states must still be computed in series

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN



Encoder is still Recurrent
• Encoder: Recurrent functions can’t be parallelized because previous state 

needs to be computed to encode next one 

• Problem: Encoder hidden states must still be computed in series

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Who can think of a task where this might be a problem? 



Solution: 
Transformers!



Full Transformer

• Made up of encoder and decoder 

• Both encoder and decoder made up of multiple 
cascaded transformer blocks 

- slightly different architecture in encoder and 
decoder transformer blocks 

• Blocks generally made up multi-headed attention 
layers (self-attention) and feedforward layers 

• No recurrent computations!

(Vaswani et al., 2017)

Encode sequences with self-attention



Self-Attention Toy Example
• Original Idea: Use decoder hidden state to compute attention 

distribution over encoder hidden states 

• New Idea: Could we use encoder hidden states to compute attention 
distribution over themselves? 

• Ditch recurrence and compute encoder state representations in parallel!

hℓ
t = encoder hidden state at time step t at layer  ℓ

h0
2 h0

3 h0
4h0

1
“query”“key” “key” “key”



Recap: Attention with RNNs
• Compute pairwise similarity between each encoder hidden state and 

decoder hidden state (“idea of what to decode”) 

• Convert pairwise similarity scores to probability distribution (using 
softmax!) over encoder hidden states and compute weighted average:

he
1 hd

1

,( )f
he

2 hd
1

,( )f
he

3 hd
1

,( )fa1 = a2 = a3 = 

αt =
eat

∑j eajSoftmax! Here  is known  
as the “value”

he
th̃d

1 =
T

∑
t=1

αthe
t

αt

“query”“key” “query”“key” “query”“key”



Self-Attention Toy Example
• For a particular encoder time step, compute pairwise score between this 

hidden state (the query) and the other encoder hidden states

h0
2 h0

3 h0
4h0

1

Self 
Attention

h̃1
3

“query”“key” “key” “key”



Self-Attention Toy Example
hℓ

t = encoder hidden state at time step t at layer  ℓ

h0
1 h0

3

,( )fa31 = 

αst =
east

∑j easj
h̃ℓ

s =
T

∑
t=1

αst(WVhℓ
t )ast =

(WQhℓ
s )T(WKhℓ

t )

d

hℓ
t hℓ

s

,( )fast = 

“query”“key” “query”“key”

Compute pairwise scores Get attention  
distribution

Attend to values to  
get weighted sum



Self-Attention Toy Example
hℓ

t = encoder hidden state at time step t at layer  ℓ

h0
1 h0

3

,( )fa31 = 

αst =
east

∑j easj
h̃ℓ

s =
T

∑
t=1

αst(WVhℓ
t )ast =

(WQhℓ
s )T(WKhℓ

t )

d

hℓ
t hℓ

s

,( )fast = 

{1, …, t, …, T}  
includes s! 

Self-attention!

“query”“key” “query”“key”
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Self-Attention Toy Example
• Every token is a query! Recompute self-attention value for each position in 

the sequence



Question

What are two advantages of self-attention 
over recurrent models? 



Self-Attention Recap

• Computed in parallel — no 
previous time step computation 
needed for the next one 

• No long-term dependencies 
— direct connection between 
all time-steps in sequence
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4h0
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Self 
Attention

h̃1
3

Self 
Attention

Self 
Attention

Self 
Attention

h̃1
4h̃1

2h̃1
1



Multi-Headed Self-Attention
• Project V, K, Q into H sub-vectors where H is the 

number of “heads” 

• Compute attention weights separately for each 
sub-vector 

• Concatenate sub-vectors for each head and project

h̃ℓ
i = α(VWV

i )

ai =
(WQ

i q)(WK
i K)

d/H

h̃ℓ = WO[ h̃ℓ
0; . . . ; h̃ℓ

i ; . . . ; h̃ℓ
H ]

Vaswani et al., 2017

αi = softmax(ai)



Transformer Block
• Self-attention is the main innovation of the 

popular transformer model! 

• Each transformer block receives as input the 
outputs of the previous layer at every time step 

• Each block is composed of a multi-headed 
attention, a layer normalisation, a feedforward 
network, and another layer normalisation 

• There are residual connections before every 
normalisation layer 

• Layer normalisation + residual connections 
don’t add capacity, but make training easier

Vaswani et al., 2017



Full Transformer
• Full transformer encoder is multiple cascaded 

transformer blocks  

- build up compositional representations of 
inputs 

• No need to propagate state forward in time 

- states at each time step computed in 
parallel! 

• Transformer decoder (right) similar to encoder 

- second attention layer to compute weighted 
average of encoder states before FFN

Recurrent models provided word order information 

Does self-attention provide word order information? 

Vaswani et al., 2017



Position Embeddings
• Self-attention provides no word order 

information 

- Computes weighted average over set of 
vectors 

• Word order is pretty crucial to understanding 
language 

- How do we fix this? 

• Add an additional embedding to the input 
word that represents a position in the sequence

Vaswani et al., 2017



Position Embeddings
• Self-attention provides no word order 

information 

- Computes weighted average over set of 
vectors 

• Word order is pretty crucial to understanding 
language 

- How do we fix this? 

• Add an additional embedding to the input 
word that represents a position in the sequence

Vaswani et al., 2017

• Early position embeddings encoded a sinusoid 
function that was offset by a phase shift 
proportional to sequence position 

• In practice, position embeddings are learned 
scratch or more modern methods are used 
(e.g., Rotary position embeddings, AliBi)



Other Resources of Interest

• The Annotated Transformer 

- https://nlp.seas.harvard.edu/2018/04/03/attention.html 

• The Illustrated Transformer 

- https://jalammar.github.io/illustrated-transformer/ 

• Only basics presented here today! Many modifications to initial 
transformers exist



Recap
• Temporal Bottleneck: Vanishing gradients stop many RNN architectures from 

learning long-range dependencies 

• Parallelisation Bottleneck: RNN states depend on previous time step hidden state, 
so must be computed in series 

• Attention: Direct connections between output states and inputs (solves temporal 
bottleneck) 

• Self-Attention: Remove recurrence, allowing parallel computation 

• Modern Transformers use attention as primary function, but require position 
embeddings to capture sequence order
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Deep Learning for  
Natural Language Processing

Antoine Bosselut



Part 2: Recurrent Neural  
Networks for Sequence Modeling



Section Outline

• Background: Language Modeling, Feedforward Neural Networks, 
Backpropagation 

• Content - Models: Recurrent Neural Networks, Encoder-Decoders 

• Content - Algorithms: Backpropagation through Time, Vanishing 
Gradients



Language Modeling
• Given a subsequence, predict the next word: The cat chased the _____



Fixed Context Language Models
• Given a subsequence, predict the next word: The cat chased the _____

The cat chased the

Concatenation

Feedforward Neural Network

mouse

P(y) = softmax(bo + Wo tanh(bh + Whx))

(Bengio et al., 2003)



• Given a subsequence, predict the next word:

The starving cat frantically chased the elusive _____

cat chased the elusive

Concatenation

Feedforward Neural Network

dream

The starving frantically

Fixed Context Language Models

(Bengio et al., 2003)



Problem

Fixed context windows limit language modelling capacity 

How can we extend to arbitrary length sequences? 



Recurrent Neural Networks
• Solution: Recurrent neural networks — NNs with feedback loops

8
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Input
xt
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Unrolling the RNN

xt

ht

zt

xt−1

ht−1

zt−1

xt+1

zt+1

ht−2 ht+1

Unrolling the RNN across all time steps gives full computation graph

9

Allows for learning from entire sequence history, regardless of length
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Unrolling the RNN
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Unrolling the RNN
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Classification
• Classifier is just an output projection followed by a softmax!

16

h6
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x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x7

mouse

x6

Classifier

z7

P(y) = σ(Wo zT)
Binary 

P(y) = softmax(Wo zT)
Multi-class 

̂y



Question

17

Why would you use the output of the last  
recurrent unit as the one to predict a label?



Classical RNN: Elman Network

18

ht

xt

zt

ht−1

xt−1

zt−1

ht−2

zt = σ(Wzhht + bz)
ht = σ(Whxxt + Whhht−1 + bh)

(Elman, 1990)

What should  be? h0



Backpropagation Review: FFNs
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ℒ( ̂y, y) = y log P( ̂y)

Cross-entropy  
loss function:

x
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Question

30

How would we extend backpropagation  
to a recurrent neural network?



Recall
• RNN can be unrolled to a feedforward neural network 

• Depth of feedforward neural network depends on length of the sequence

31
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Backpropagation through Time
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xt

zt

xt−1

ht−1ht−2 ht
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Backpropagation through time
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Summary

• Neural language models allow us to share information among similar 
sequences by learning neural representations that similarly represent them 

• Problem: Fixed context language models can only process a limited 
window of the word history at a time 

• Solution: recurrent neural networks can theoretically learn to model an 
unbounded context length
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Vanishing Gradients
• Learning Problem: Long unrolled networks will crush gradients that 

backpropagate to earlier time steps
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Backpropagation through time
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Problem in many recurrent neural networks,  

Especially pronounced in Elman networks  
(Vanilla RNNs) due to the sigmoid activation 



Issue with Recurrent Models
• Multiple steps of state overwriting makes it challenging to learn long-

range dependencies. 

• Nearby words should affect each other more than farther ones, but RNNs 
make it challenging to learn any long-range interactions

They tuned, discussed for a moment, then struck up a lively 
jig. Everyone joined in, turning the courtyard into an even 
more chaotic scene, people now dancing in circles, swinging 
and spinning in circles, everyone making up their own dance 
steps. I felt my feet tapping, my body wanting to move. 
Aside from writing, I ’ve always loved dancing .

LAMBADA dataset, 2016



Gated Recurrent Neural Networks
• Use gates to avoid dampening gradient signal every time step 

                   Elman Network                    Gated Network Abstraction 

• Gate value f computes how much information from previous hidden state 
moves to the next time step —> 0 < f < 1 

• Because  is no longer inside the activation function, it is not 
automatically constrained, reducing vanishing gradients! 

ht−1
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ht = σ(Whxxt + Whhht−1 + bh) ht = ht−1 ⊙ f + func(xt)



Long Short Term Memory (LSTM)

xt
ht

σ σ

σ
ct−1

c̃t

ft

it ot

ϕ ϕ

ft = σ(Wfxxt + Wfhht−1 + bf)
it = σ(Wixxt + Wihht−1 + bi)
ot = σ(Woxxt + Wohht−1 + bo)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)

ct

ht−1

ht−1ht−1

ct = it × c̃t + ft × ct−1

ht = ot × ϕ(ct)

Gates:

(Hochreiter and Schmidhuber, 1997)



Question

How can we use recurrent neural networks in practice?

Machine Translation involves more than estimating 
the probability next word; requires generating a full 
translation of a given context into another language 



Encoder-Decoder Models
• Encode a sequence fully with one model (encoder) and use its representation 

to seed a second model that decodes another sequence (decoder) 

• Decoder is autoregressive, generates 
one word at a time (like an LM)
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y0 ̂y1 ̂y2 ̂y3

(Sutskever et al., 2014)



Encoder-Decoder Models
• e.g., machine translation 

• Generate the words of the 
translated sequence of text

Decoder 
LSTM

Decoder 
LSTM

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Decoder 
LSTM

y0 ̂y1 ̂y2 ̂y3

m’ appelle AntoineJe <START>
am AntoineI

am AntoineI <END>

(Sutskever et al., 2014)



Encoder-Decoder Models
• Input doesn’t need to be text 

• e.g., image captioning 

• Generate words of image 
description

Decoder 
LSTM

Decoder 
LSTM

̂y1 ̂y2 ̂y3 ̂y4

Decoder 
LSTM

Decoder 
LSTM

y0 ̂y1 ̂y2 ̂y3

<START>
on bikeMonkey

on bikeMonkey <END>

Image 
Encoder 
(CNN)

Photo credit: J Hovenstine Studios

(Vinyals et al., 2014)



Bidirectional Encoders
• Decoder needs to be unidirectional (can’t know the future…) 

• Encoder sequence representation augmented by encoding in both directions
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Encoder 
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Encoder 
RNN
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Encoder 
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Encoder 
RNN

Encoder 
RNN

Encoder 
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hfwd
t
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t

(Schuster and Paliwal, 1997)



• Decoder needs to be unidirectional (can’t know the future…) 

• Encoder sequence representation augmented by encoding in both directions

x2 x3 x4x1

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

hfwd
t

hbwd
t

Decoder 
LSTM[hfwd

t ; hbwd
t ]

(Schuster and Paliwal, 1997)

Bidirectional Encoders



Other Resources of Interest
• Approaches for maintaining state and avoiding vanishing gradients 

- Long Short-Term Memory (Hochreiter and Schmidhuber, 1997): 

- Gated Recurrent Units (Cho et al., 2014): 

• LSTM: A Search Space Odyssey (Greff et al., 2015)  

- Examine 5000 different modifications to LSTMs — none significantly 
better than original architecture 

• Only basics presented here today! Many offshoots of these techniques!



Recap
• Early neural language models (and n-gram models) suffer from fixed 

context windows 

• Recurrent neural networks can theoretically learn to model an 
unbounded context length using back propagation through time (BPTT) 

• Practically, however, vanishing gradients stop many RNN architectures 
from learning long-range dependencies 

• RNNs (and modern variants) remain useful for many sequence-to-
sequence tasks
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