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Conversational Systems
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Question Answering
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what is the tallest mountain in europe ? X

Q Al &) Images ) Maps (& News [») Videos : More Tools

About 12'400°'000 results (1.10 seconds)

Europe / Mountains / Maximal / Elevation

Mount Elbrus

9,642 m

Mountains

Dykh-Tau Shkhara Koshtan-Tau Mount Alps Mont Blanc
5,205 m 5,193 m 5,151 m Kazbek 4810 m
5,033 m
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Jo

who is the president of switzerland ? X

Q Al [X) Images [E) News ¢ Maps (] Videos : More Tools

About 415'000'000 results (0.82 seconds)

Guy Parmelin

The President of the Swiss Confederation in 2021 is Guy Parmelin from the canton of Vaud. He was
elected on 9 December 2020. The President’'s department in 2021 is the Federal Department of
Economic Affairs, Education and Research EAER.

https://www.admin.ch » gov » start » federal-presidency
Presidential year 2021
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Text Generation
an

Can you give me a two-day itinerary for a weekend trip to Paris ? Please don't include
more than three activities per day.

Day 1:

1. Visit the Eiffel Tower - Start your day with the iconic symbol of Paris, the Eiffel Tower.
Take a stroll around the Champ de Mars and enjoy the views from the tower.

2. Explore the Louvre Museum - After lunch, head to the Louvre Museum and admire the
world-famous artwork such as the Mona Lisa and the Venus de Milo.

3. Stroll along the Seine River - In the evening, take a romantic stroll along the Seine River

and enjoy the Parisian atmosphere.
Day 2:

1. Visit Notre-Dame Cathedral - Start your day by visiting one of the most famous Gothic
cathedrals in the world, Notre-Dame Cathedral.

2. Explore the Marais neighborhood - After lunch, explore the Marais neighborhood,
known for its historical architecture, trendy boutiques, and restaurants.

3. Enjoy a Cabaret Show - In the evening, enjoy a cabaret show at the famous Parisian

venue, the Moulin Rouge, and end your trip with a memorable experience.
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Next few weeks!

® Today: Deep Learning for Natural Language Processing
® In two weeks: Neural Text Generation

® Final week: Modern NLP & Ethical Implementation of NLP




Today's Outline

® Introduction

® Section 1 - Neural NLP & Word Embeddings

® Section 2 - Recurrent Neural Networks for Sequence Modeling
® Section 3 - Attentive Neural Modeling with Transtformers

® Exercise Session: Attention in Transformer Language Models




Part 1: Neural Embeddings




Section Outline

® New: Building our first neural classifier
® Review: sparse word vector representations

® New: Learning dense word vector representations - CBOW & Skipgram




A simple NLP model

® How do we represent natural language sequences for NLP problems?
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| really enjoyed the movie we watched on Saturday!




A simple NLP model

® How do we represent natural language sequences for NLP problems?

+ [ =

In neural natural

language processing,
words are vectors!

| really enjoyed the movie we watched on Saturday!




Question

What words should we model as vectors?

13



Choosing a vocabulary

® | anguage contains many words (e.g., ~600,000 in English)

-  What about other tokens: Capitalisation? Accents ? Typos!? Words in other languages!? In other
scripts!? Emojis 1?7 Unicode 17

- Millions of potential unique tokens! Most rarely appear in our training data (Ziptian distribution)

- Model has limited capacity

14

https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words



Choosing a vocabulary

® | anguage contains many words (e.g., ~600,000 in English)

- What about other tokens: Capitalisation? Accents ? Typos!? Words in other languages!? In other
scripts!? Emojis 1?7 Unicode 17

- Millions of potential unique tokens! Most rarely appear in our training data (Ziptian distribution)

- Model has limited capacity

® How should we select which tokens we want our model to process?

- CS-552: Modern NLP Week 13 - Tokenisation!
- For now, initialize a vocabulary V of tokens that we can represent as a vector

- Any token not in this vocabulary V'is mapped to a special <UNK> token (e.g., unknown).
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https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words



Question

How should we model a word as a vector?

16



Sparse Word Representations

® Define a vocabulary V

® Fach word in the vocabulary is
represented by a sparse vector

® Dimensionality of sparse vector is
size of vocabulary (e.g., thousands,
possibly millions)

I

really
enjoyed
the

movie

!

wW; € (0,1}

— [0...0001...00]
— [0...1...00000]
— [0...00010...0]
— [0...01000...0]
— [0...00000...1]
— [1...0000000O0]



Word Vector Composition

® To represent sequences, beyond words, define a composition function over
sparse vectors

. . Simple
| reall d th | — 1...17101...01
really enjoyed the movie [ ] Counts
| really enjoyed the movie! =—» [0.01 ... 0.1 0.1 00.001 ...00.5]
Weighted by
Corpus Statistics
(e.g., TF-IDF)

Many others...




Problem

With sparse vectors, similarity is a function of common words!

How do you learn learn similarity between words?

enjoyed ——> [0...0001...00]

loved  =—b> [0...1...00000]

sim( enjoyed, loved) =0




Fmbeddings Goal

A A A Italy
Canada Spain ’,.
man walked 2 i ,". ,". "
urke
.“-\ woman Y. .y .’ .‘ Rome
s , . :
O 0 57 Ottawa Madrid Germany
kin.\\‘\ O swam k.‘ Russia ,,'.
£ ) walking ® Ankara [ .‘
gueestH - .Af' Berlin
O Moscow ' Japan
S Vietnam O
swimming O China
g
¢ o -
Tokyo x
Hano1 .
Be1]ing
Male-Female Verb Tense Country-Capital

How do we train semantics-encoding embeddings of words?

Image Credit: https://towardsdatascience.com/legal-applications-of-neural-word-embeddings-556b7515012f



Dense Word Vectors

® Represent each word as a high-dimensional*, real-valued vector

- *Low-dimensional compared to V-dimension sparse representations, but still usually O(102- 103)

I

really
enjoyed
the

movie

!

—

[0.113 -0.782 1.893 0.984 6.349 ...]
word vectors

[ 0.906 0.661 -0.214 -0.894 -0.880 ...]
word embeddings

[-0.842 0.647 -0.882 0.045 0.029 ...]

neural embeddings

[0.100 0.765 -0.333 -0.538 -0.150 ...]
dense embeddings
[0.104 -0.054 -0.268 -0.877 0.005 ...]

others...
[ 0.439 -0.577 -0.727 0.261 0.699 ...]

® Similarity of vectors represents similarity of meaning for particular words



A simple NLP model

® For each sequence §, we have a corresponding sequence of embeddings X

AT_1 AT

X X

§ = I really enjoyed the movie we watched on Saturday!

X=1{X),X{5---,Xp}

22



A simple NLP model

® For each sequence §, we have a corresponding sequence of embeddings X

AT_1 AT

A0 X1

Sl — | really enjoyed the movie we watched on Saturday !

X=1{X),X{5---,Xp}

® Embeddings x, € X are indexed from shared embedding dictionary E for all
items in vocabulary V

Bolded words would index
the same embedding in [t

S2 — We really loved a film we saw last Sunday !

23



A simple NLP model

® For each sequence §, we have a corresponding sequence of embeddings X

We have our word
embeddings!

§ = I really enjoyed the movie we watched on Saturday!

24



Question

What should we use as a model?

25



A simple NLP model

® Our model modities and / or composes these word embeddings to

formulate a representation that allows it to predict the correct label

+ [ =

T

AT_1 AT

A0 A1

§ = I really enjoyed the movie we watched on Saturday!
26




A simple NLP model

® Our model modifies and / or composes these word embeddings to
formulate a representation that allows it to predict the correct label

- Recurrent neural networks (RNNs) - Today!

- RNN variants (LSTM, GRU, etc.) - Today!

- Transformer - Today!

27




A simple NLP model

Notation: Typically, we represent

the output of a model as h (or o) .

§ = I really enjoyed the movie we watched on Saturday!

28



Question

How do we convert the output of our model to a prediction?

29



Predicting the label

4 T

AT_1 AT

A0 A1

§ = I really enjoyed the movie we watched on Saturday!

30



Predicting the label

+ / - Learn using

Use h; as the input features to a B backpropagation:
L . Logistic RGQFGSS'OH P(y) = o(W, hy) compute gradients of
classification algorithm! |

loss with respect to

- initial embeddings X

_earn embeddings

that allow you to do

the task successfully!

X=1{X),X{,5---,Xp}

§ = I really enjoyed the movie we watched on Saturday!

31



Question

What could be a better way to learn word embeddings?

32



"You shall know a word by the company it keeps”

—J.R. Firth, 1957




Context Representations I

Solution:

Rely on the context in which words occur to learn their meaning

Context is the set of words that occur nearby

| really enjoyed the we watched on Saturday!
The growled at me, making me run away.
| need to go to the to pick up some dinner.

Foundation of distributional semantics




L earning Word Embeddings I

® Many options, huge area of research, but three common approaches

® Word2vec - Continuous Bag of Words (CBOW)

- Learn to predict missing word from surrounding window of words

® Word2vec - Skip-gram

- Learn to predict surrounding window of words from given word

® GloVe

I - Not covered today

ikolov et al., 2013a; 2013b; Pennington et al., 2014)



Continuous Bag ot Words (CBOW) I

® Predict the missing word from a window of surrounding words

movie

T

1

Sum

Context: enjoyed the we watched

|

ikolov et al., 2013a)



Continuous Bag ot Words (CBOW) I

® Predict the missing word from a window of surrounding words

max P(movie | enjoyed, the, we, watched)

movie

5 max P (Wt ‘ Wi_2s W15 Wt+1’ Wt+2)
Prolectlon max P (Wt ‘ {Wx}izif%
enjoyed watched

IA'koov et al., 2013a)



Continuous Bag ot Words (CBOW) I

® Predict the missing word from a window of surrounding words

. t 2
P(w, | {w,}*=*7) = softmax(U Wx>
c:b s
X
Prolectlon
m axo mens -

enjoyed watched

IA'koov et al., 2013a)



Softmax Function

® The softmax function generates a probability distribution from the
elements of the vector it is given

d

e l
lal 4.
J
Tl e

softmax(a); =

V=[0.790 -0.851 0.506 0.767 -0.788 0.793 0.887 0.219 -0.052 0.461 ]

Softmax(V)

P(V) =10.144 0.028 0.108 0.141 0.030 0.144 0.159 0.081 0.062 0.104 ]




Continuous Bag ot Words (CBOW) I

® Predict the missing word from a window of surrounding words

. t 2
P(w, | {w,}*=*7) = softmax(U Wx>
c:b s
X
Prolectlon
m axo mens -

enjoyed watched

IA'koov et al., 2013a)



Continuous Bag ot Words (CBOW)

+2
x=t+2\ __
P(Wt‘ {Wx} ) softmax( U Z W, ® Model is trained to maximise the
x=1—-2 probability of the missing word
X #t
movie - For computational reasons, the model is
typically trained to minimise the negative
@ log probability of the missing word
PrOJectlon ® Here, we use a window of N=2, but
the window size is a hyperparameter
‘m ® For computational reasons, a
hierarchical softmax used to
enjoyed watched

compute distribution

ikolov et al., 2013a)




® \We can also learn embeddings by predicting the surrounding context from a single word

Context: max P(enjoyed, the, we, watched | movie)

watched we the enjoyed max P (Wt_za Wi 15 Wir15 Wego ‘ Wt)

T
a0

*

movie

ikolov et al., 2013b)



Skip-gram

® \We can also learn embeddings by predicting the surrounding context from a single word

watched

ikolov et al., 2013b)

we

Context:

T
D

*

movie

the

enjoyed

max P(enjoyed, the, we, watched | movie)
max P(W,_o, W_1, Wy s Wepo | W)

max log P(W,_», W,_1, W1, Wiin [ W)

max (log Pw,_,|w,) +log P(w,_;|w)

+log P(w,,{|w,) + log P(w,., | wt))




® \We can also learn embeddings by predicting the surrounding context from a single word

Context:

watched we the enjoyed

P(w,|w,) = softmax(Uw,)

m 1xd
W €l -

T
axId

*

movie

ikolov et al., 2013b)



® \We can also learn embeddings by predicting the surrounding context from a single word

Context: ® Model is trained to minimise the
negative log probability of the

watched we the enjoyed :
¢ surrounding words

® Here, we use a window of N=2, but the
window size is a hyperparameter to set

t e Typically, set large window (N=10), but
aQIID randomly select i € [1,N] as dynamic

*

movie

window size so that closer words
contribute more to learning

ikolov et al., 2013b)



Question

What is the major conceptual difference between the CBOW
and Skipgram methods for training word embeddings?




Skip-gram vs. CBOW

® Question: Do you expect a difference between what is learned by CBOW
and Skipgram methods?

watched we the enjoyed

movie

T
a0

*

movie enjoyed the we watched

(Mikolov et al., 2013b) (Mikolov et al., 2013a)



CBOW Skip-gram

] top cbow = cbow.wv.most similar('cut’', topn=10) ] top_sg = skipgram.wv.most_similar(’'cut’, topn=10)

print(tabulate(top cbow, headers=["Word", "Simi print(tabulate(top_sg, headers=["Word", "Similarit

Similarity Similarity

Crosswise
score

tear

dice
lengthwise
cutting
break

chop

carve

0
0
0
0
0
0
0
0
0
0

.662173
.650036
.630569
.618827
.563946
337231
.557228
.551517
.541566
.537967

48

crosswise
score
slice

Crossways

1/2<inch-thick

diamonds
diagonally
lengthwise
cutting

wise

0.
0
0
0
0
0
0
0
0
0

. 702693
.696898
.680091
.678496
.671814
.670319
.665378
.66425
.656825




Recap

® Neural NLP: Words are vectors!

® \Word embeddings can be learned in a selt-supervised manner from large
quantities of raw text

® Two algorithms: Continuous Bag ot Words (CBOW) and Skip-gram




Resources

® word2vec: https://code.google.com/archive/p/word2vec/

® GloVe: https://nlp.stantord.edu/projects/glove/

® FastText: https://tasttext.cc/

® Gensim: https://radimrehurek.com/gensim/

Download pre-trained word vectors

o Pre-trained word vectors. This data is made available under the Public Domain Dedication and License v1.0 whose full text can be tound at:
http://www.opendatacommons.org/licenses/pddl/1.0/.
o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
o Common Crawl (42B tokens, 19M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
o Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
o lwitter (2B tweets, 278 tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove twitter.278.zip

e Ruby script for preprocessing Twitter data

50



https://fasttext.cc/
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Part 3: Attentive Neural
Modeling with Transtformers




Section Outline

® Background: Long-range Dependency Modeling

® Content: Attention, Selt-Attention, Multi-headed Attention, Transtormer
Blocks, Transtormers

® Exercise Session: Visualizing Transformer Attention




Issue with Recurrent Models

® Multiple steps of state overwriting makes it challenging to learn long-
range dependencies.

They tuned, discussed for a moment, then struck up a lively
jig. Everyone joined in, turning the courtyard into an even
more chaotic scene, people now dancing in circles, swinging
and spinning in circles, everyone making up their own dance
steps. | felt my feet tapping, my body wanting to move.
Aside from writing, | 've always loved dancing .

® Nearby words should affect each other more than farther ones, but RNNs
make it challenging to learn any long-range interactions

LAMBADA dataset, 2016



Toy Example

® The model sees 4 extra tokens: ’ am Antoine <END>
IImIII’ IlappeHell, IIAn_tOinell’ j\}l j\}z 5\23 j\}4

<START> before generating the

llIII

correspond to “Je”

Encoder Encoder Encoder Encoder

?

D AIID AIID AIXID
t I t A?
Yo V1 Y2 Y3

Je m’ appelle  Antoine <START> I am Antoine

utskever et al., 2014)



Toy Example

/ am Antoine <END>

® The model sees 4 extra tokens:

/

'm'”, "appelle”, “Antoine”,
<START> before generating the

llIII

correspond to “Je”

Decoder
RNN

Decoder
RNN

Decoder
RNN

Decoder
RNN

Encoder Encoder Encoder Encoder

RNN > RNN > RNN > RNN

How can we reduce this temporal
bottleneck ?

utskever et al., 2014)



Attentive Encoder-Decoder Models I

® Recall: At each encoder
time step, there is an
output of the RNN!

he 5 he h

Encoder Encoder Encoder Encoder
LSTM LSTM LSTM LSTM

(Bahdanau et al., 2015)



Attentive Encoder-Decoder Models

~ ® Recall: At each encoder
time step, there is an
output of the RNN!

hy L

® |dea: Use the output of the
Decoder LSTM to compute

an attention (i.e., a mixture)

Encoder Encoder Encoder Encoder

over all the hfoutputs of the
LSTM LSTM LSTM LSTM LSTM

encoder LSTM

?
QXD QIID QIID QIID) QIXD . intuition: focus on different
t t t t t

parts of the input at each
X1 Xy X3 X4 Yo time step

(Bahdanau et al., 2015)



What is attention?

® Attention is a weighted average over a set of inputs

hte = encoder output hidden states

® How should we compute this weighted average?

he 5 5 h hd

Encoder Encoder Encoder
RNN RNN RNN

Encoder Decoder
RNN RNN




Attention Function

® Compute pairwise similarity between each encoder hidden state ana
decoder hidden state (“idea of what to decode”)

hte = encoder output hidden states htd = decoder output hidden state
Also known as a “keys” Also known as a “query”

he hS h¢ h




Attention Function

® Compute pairwise similarity between each encoder hidden state ana
decoder hidden state (“idea of what to decode”)

hte = encoder output hidden states htd = decoder output hidden state

Also known as a “keys” Also known as a “query”

hi hS  hd h  he hy h¢

I ® We have a single query vector for multiple key vectors



Attention Function

Attention Function Formula

Multiplicative a = h*Wh*

Linear d = VTQb(W[he; hd])

_ (Wh9)T(Uh)

V/a

Scaled Dot Product a




Attention Function

® Compute pairwise similarity between each encoder hidden state ana
decoder hidden state (“idea of what to decode”)

m

® Convert pairwise similarity scores to probability distribution (using

Cll—

6

3

he
1

softmax!) over encoder hidden states and compute weighted average:

T
7d _ Here /if is known
—’llll—'hl—Z“rhf , ovalue’
as the “value
a, =1

Softmax!




Attentive Encoder-Decoder Models

T A\

7.d _ e Y1 -

hl — Z atht ® |ntuition: hf contains
=1

information about hidden

of

states that got high
attention

hy )

e Typically, iz‘ll is concatenated
(or composed in some other

manner) with hld (the original
decoder state) before being
passed to the output layer

® Output layer predicts the
most likely output token y,

(Bahdanau et al., 2015)



Attentive Encoder-Decoder Models I
| | T 5,
X | Output

T

[h¢; hd]
he hs he

hy

1,d
h2

A

Attention

hg Repeat in

Encoder Encoder Encoder Encoder Decoder Decoder next time step
LSTM LSTM LSTM LSTM LSTM LSTM to g ot new

{ distribution

aId D D A o A 0
t t t t t t

X Xy X3 Xy Yo Y1

(Bahdanau et al., 2015)



Attentive Encoder-Decoder Models I

I I and the next one... A
“ m
[hd, hi]

hle hze h§ hj 90000

Encoder Encoder Encoder Encoder Decoder
LSTM LSTM LSTM LSTM

Attention Attentlon

Decoder

(Bahdanau et al., 2015)



Attention Recap

® Main Idea: Decoder computes a weighted sum of encoder outputs

® Compute pairwise score between each encoder hidden state and initial
decoder hidden state

hte = encoder output hidden states htd = decoder initial hidden state
® Many possible functions for computing scores (dot product, bilinear, etc.)

® Temporal Bottleneck Fixed! Direct connection between decoder and
ALL encoder states




Question

Do any other inefficiencies remain in our

sequence to sequence pipelines?




Fncoder is still Recurrent I

® Encoder: Recurrent functions can’t be parallelized because previous state
needs to be computed to encode next one

Encoder Encoder Encoder Encoder
RNN RNN I RNN RNN

® Problem: Encoder hidden states must still be computed in series




Fncoder is still Recurrent

® Encoder: Recurrent functions can’t be parallelized because previous state
needs to be computed to encode next one

Encoder Encoder Encoder Encoder
RNN RNN I RNN RNN

® Problem: Encoder hidden states must still be computed in series

Who can think of a task where this might be a problem?




Solution:
Transformers!




Full Transformer

Made up of encoder and decoder

Both encoder and decoder made up of multiple
cascaded transtformer blocks

- slightly ditferent architecture in encoder and
decoder transformer blocks

Blocks generally made up
layers (self-attention) and feedforward layers

No recurrent computations!

Encode sequences with self-attention

Qutput
Probabillities

1

| Softmax |

1

|  Linear |

4 )
Add & Norm <=

Feed
Forward

) J

I Add & Norm l"\

Multi-Head
Attention

(
4 ] )
~—>| Add &I Norm |
Feed
Forward
—
N Add & Norm
Multi-Head
Attention
\ y
Positional
Encoding
Input
Embedding
Inputs

g_}_ir_) N
LAdd & Norm Je~

Masked
Multi-Head
Attention

A+ )
\_ | 7 )
Positional
Encoding

Output
Embedding

T

Qutputs
(shifted right)

(Vaswani et al., 2017)




Selt-Attention Toy Example

® Original Idea: Use decoder hidden state to compute attention
distribution over encoder hidden states

® New ldea: Could we use encoder hidden states to compute attention
distribution over themselves?

® Ditch recurrence and compute encoder state representations in parallel!

htf = encoder hidden state at time step t at layer £
A A t A

hy h) hy hy

“key” “key” “query” “key”




Recap: Attention with RNNs I

® Compute pairwise similarity between each encoder hidden state ana
decoder hidden state (“idea of what to decode”)

he ¢ h  h¢ h{ h¢

“key” “query” “key” “query” “key” “query”

® Convert pairwise similarity scores to probability distribution (using
softmax!) over encoder hidden states and compute weighted average:

T
7d _ Here /if is known
—’llll—'hl—Z“rhf , ovalue’
as the “value
a, =1

Softmax!




Selt-Attention Toy Example I

® For a particular encoder time step, compute pairwise score between this

hidden state (the query) and the other encoder hidden states
h;

Self

Attention
cmémooo)
t t t t
hy h) hy) hy

“key” “key” “query” “key”



Selt-Attention Toy Example

f

= encoder hidden state at time step t at layer ¢

key query key query

_ (Wa)T(—WK.) a, = e he = ZT:%(W‘I

St st q..
e
Va )
Get attention Attend to values to

Compute pairwise scores o , ,
pate p distribution get weighted sum




Selt-Attention Toy Example

f

= encoder hidden state at time step t at layer ¢

d31 = 8 a * Ast = 8 a

“key!! “query!! “key” “query” {1 t 'I'}
includes sl
east
a. = d., —
St St a
e
2,
Get attention Attend to values to

Compute pairwise scores

distribution get weighted sum



Selt-Attention Toy Example I

Attend to values to
get weighted sum

a, = m Al Bl = i ast(w‘/.)
vd 60000

Get attention distribution

Compute pairwise scores

Self
e Ysi Attention

|

XYYY) QAXXIY) (OO000 QXXX

t t
Wooow R

“key” “key” “query” “key”

04

st — o
%"

4 t




Selt-Attention Toy Example

Compute pairwise scores jl Attend to values to

3 et weighted sum
_ WBWE i = WOl
Ja

Get attention distribution “query” I = hf
a = softmax(a)
“values”

d

K=[a-= )]
“query!!
“key” “key” “key” “key”
“value” “value” “value” “value”

For each attention computation, every element is a key and value, and one element is a query




Selt-Attention Toy Example

Compute pairwise scores Al Attend to values to
2 get weighted sum

B = Woa (W)

Attenti
Get attention distribution e “query” I = hf
a = softmax(a)

‘“values”

idd) OO000 QXXY) (XXXX

t t t
KB B

? “keyS”
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“query!!
“key” “key” “key” “key”
“value” “value” “value” “value”

For each attention computation, every element is a key and value, and one element is a query



Selt-Attention Toy Example

Attend to values to
get weighted sum

B = WOoa(UW")

Compute pairwise scores 7l
4

_ (WIRDWHE
\[Z Self

Attention

_ 1.L
cquery” I = h!
“values”

00000
d

Get attention distribution
a = softmax(a)

90000 0000 R0OOOO @OOOO) — {hf}T_
f f f 1 k.v W )
E B B B
“key” “kKey” “key” “key”

“value” “value” “value” “value”

For each attention computation, every element is a key and value, and one element is a query



Selt-Attention Toy Example I

® Every token is a query! Recompute self-attention value for each position in
the sequence

h h hy hy
(OO000) (©O000) COO0C

Self Self Self Self
Attention Attentlon Attention Attention

')<"
/ X\

t t t t
hy h) hy hy)




Question

What are two advantages of self-attention

over recurrent models?




Selt-Attention Recap

h h hy hy
(OO000) (©OO00) COO0C

® Computed in parallel — no
previous time step computation

Self Self Self Self needed for the next one

Attention Attention Attention Attention

N O A .
‘y«')q ® No long-term dependencies
O @,

RS
> — direct connection between
k 4';‘ >§‘ all fime—iteps in ;c;equ:nt:e

!

<\

t t t
hy h,) hy) hy)




Multi-Headed Selt-Attention I

® ProjectV, K, Q into H sub-vectors where H is the

number of “heads”

K
. _ We(WiK)
L -Concat
\Vd/H
e Compute attention weights separately for each Soalod Dot-Product '
sub-vector Attention 4N

a, = softmax(a,) he = a(VW/) o

\J \J

® Concatenate sub-vectors for each head and project

~J

' =WOLhS;, ...;h%; ... ke ] V K Q

Vaswani et al., 2017



Transtformer Block

® Self-attention is the main innovation of the Add & NOrm
popular transformer model!

® Each transformer block receives as input the
outputs of the previous layer at every time step

® Each block is composed of a multi-headea
attention, a layer normalisation, a feedforward

network, and another layer normalisation Add & NOrm

® There are residual connections before every Multi-Head
normalisation layer Attention

® |ayer normalisation + residual connections
don’t add capacity, but make training easier

Vaswani et al., 2017



Full Transformer

Output
Probabilities

® Full transformer encoder is multiple cascaded [_1_]Soft1max

transformer blocks ( Thear )

Recurrent models provided word order information

Does self-attention provide word order information?

IR Attention Attention
) )
® Transformer decoder (right) similar to encoder - |
ositiona Positional
Encoding @ & Encoding
- second attention layer to compute weighted nput Output
Embedding Embedding
average of encoder states before FFN f i

Inputs Outputs
(shifted right)

Vaswani et al., 2017



Position Embeddings

® Self-attention provides no word order

information Positional
Encoding

"‘ »‘ Positional
" & ‘« Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

- Computes weighted average over set of

vectors

® \Word order is pretty crucial to understanding
language

- How do we fix this?

® Add an additional embedding to the input
word that represents a position in the sequence

Vaswani et al., 2017



Position Embeddings

® Self-attention provides no word order

information Positional
Encoding

"‘ ,‘ Positional
“’ & ‘« Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

- Computes weighted average over set of

vectors

® \Word order is pretty crucial to understanding

language
® Early position embeddings encoded a sinusoia

function that was offset by a phase shift
proportional to sequence position

- How do we fix this?

® Add an additional embedding to the input

. ® |n practice, position embeddings are learned
word that represents a position in the sequence

scratch or more modern methods are used
(e.g., Rotary position embeddings, AliBi)

Vaswani et al., 2017



Other Resources of Interest I

® The Annotated Transformer

- https://nlp.seas.harvard.edu/2018/04/03/attention.html

® The lllustrated Transformer
- https://jalammar.github.io/illustrated-transformer/

® Only basics presented here today! Many modifications to initial
transformers exist




Recap

® Temporal Bottleneck: Vanishing gradients stop many RNN architectures from
learning long-range dependencies

® Parallelisation Bottleneck: RNN states depend on previous time step hidden state,
so must be computed in series

® Attention: Direct connections between output states and inputs (solves temporal
bottleneck)

® Self-Attention: Remove recurrence, allowing parallel computation

® Modern Transformers use attention as primary function, but require position
embeddings to capture sequence order
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Part 2: Recurrent Neural

Networks for Sequence Modeling




Section Outline

® Background: Language Modeling, Feedforward Neural Networks,
Backpropagation

® Content - Models: Recurrent Neural Networks, Encoder-Decoders

® Content - Algorithms: Backpropagation through Time, Vanishing
Gradients




| anguage Modeling

® Given a subsequence, predict the next word: The cat chased the




Fixed Context Language Models I

® Given a subsequence, predict the next word: The cat chased the

P(y) = softmax(b, + W, tanh(b, + W x))
maouse

Feedforward Neural Network

Concatenation

cat chased the

(Bengio et al., 2003)



Fixed Context Language Models I

® Given a subsequence, predict the next wora:

The starving cat frantically chased the elusive

dream x

Feedforward Neural Network

Concatenation

The starving cat frantically ~ chased the elusive
(Bengio et al., 2003)



Problem

Fixed context windows limit language modelling capacity

How can we extend to arbitrary length sequences?




Recurrent Neural Networks I

® Solution: Recurrent neural networks — NNs with feedback loops

Output

e

nput ann




Unrolling the RNN

Unrolling the RNN across all time steps gives full computation graph

Zt+ 1

t+1

Allows for learning from entire sequence history, regardless of length
9




Unrolling the RNN




Unrolling the RNN




Unrolling the RNN

A A A
aaa QG da A D

starving cat fanatically chased the




Unrolling the RNN




Unrolling the RNN




Unrolling the RNN




Classification ;

® (Classifier is just an output projection followed by a softmax! @

Binary Multi-class T
P(y) = o(W, z;) P(y) = softmax(W, z;)

16



Question

Why would you use the output of the last
recurrent unit as the one to predict a label?

17



Classical RNN: Elman Network I

G0 azD by = o(Waeki+ W1 + by
Zt 1 7 = G(thht + bz)
8 O t_
xt_

m What should /1, be?
Iman, 1990)



Backpropagatlon Rewew FFNs I




Backpropagation Review: FFNs I

Z(y,y) = ylog P(y)

o

u=w X@p(.)+wy Xdy(.)+w]Xes(.)

Wy 5 0LG.y) _ 0LG.y) 05 on
0p1o( ) oy  Ou 0gyy(.)

O _ ag(j\/a )’) a¢0(u) WO
09 ou !




Backpropagation Review: FFNs I
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Backpropagation Review: FFNs I

Z(y,y) = ylog P(y)

o

u=wy X@p(.)+wy Xdy(.)+w] Xes(.)
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Backpropagation Review: FFNs

Z(y,y) =ylog P(y) + (1 — y)log P(1 — y)

o

u=wy X@p(.)+wy Xdy(.)+w] Xes(.)

W2 5 0L G.y) _ 0ZG.) 35|l
0p12( . ) oy  ou 0¢(.)

O _ ag(j\}a y) a¢0(u) WO

09 ou |
@ Depends on label y

Depends on ¢,




Backpropagation Review: FFNs

Z(y,y) =ylog P(y) + (1 — y)log P(1 — y)
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Backpropagation Review: FFNs

"1 0L($.y) _ 0L(3.y) 9 _ ou
015( ) 0y 0u 0gyy(.)

O
' ¢ _0Z(Y,y) 0p,(u) |,
— ~ Wl
0y ou
@“ W3 ,A
Y

,\ . v=Wflzlxqﬁn(-)"‘wszlX¢21(-)+W§1:1X¢31(-)
‘ 0ZL(y,y)  0ZL(y,y) 0y ou  0p(v)  0ov

0pii(.) 0y Oudp(v) v dy(.)

. aEZ()A/, Y) 0¢0(u) 0 a¢12(V) =1
— . Wi W1
dy ou Y




Backpropagation Review: FFNs

"1 0L($.y) _ 0L(3.y) 9 _ ou
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Backpropagation Review: FFNs
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Backpropagation Review: FFNs
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Backpropagation Review: FFNs
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Question

How would we extend backpropagation
to a recurrent neural network?

30



Recall

® RNN can be unrolled to a feedforward neural network

® Depth of feedforward neural network depends on length of the sequence

31



Backpropagation through Time I

= G(thht + bz)

ht = 0<th.xt + Whhhl‘—l + bh)




Backpropagation through Time

Z, = G(Whht + bz)

<

ht = 0<th.xt + Whhhl‘—l + bh)

v=W_h +0b, z, = o(v)

u = th.xt -+ Whhht—l -+ bh ht = G(I/l)

0z; 0o(v) dv.  do(v) W
oh, ov oh o




Backpropagation through Time

Z, = G(Whht + bz)

<
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Backpropagation through Time

Z, = G(Whht + bz)
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Backpropagation through Time

Z, = G(Whht + bz)

<

ht = 0<th.xt + Whhhl‘—l + bh)
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Backpropagation through Time

Z, = G(Whht + bz)

<

ht = 0<th.xt + Whhhl‘—l + bh)
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Backpropagation through Time

7, = G(Whht + bz)
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Backpropagation through time

@ Gradient flow mouse




Summary

® Neural language models allow us to share information among similar
sequences by learning neural representations that similarly represent them

® Problem: Fixed context language models can only process a limited
window of the word history at a time

® Solution: recurrent neural networks can theoretically learn to model an
unbounded context length

40



Vanishing Gradients

® Learning Problem: Long unrolled networks will crush gradients that
backpropagate to earlier time steps

by =i0{ WX, + Wyih,_ i+ by) o, _dow) ou_
— — "

h .
U = thxt + Whhht—l + bh aht_l al/t aht_l . .az/t. -:




Backpropagation through time

R Gradient flow
ey Output flow

' Oy 4

oh,  do(u) Ju

aht—l ou aht_l - hh: ou '

fanatically

r---

"do(u)

chased

>

- -
- .
. T m ————— . ——




Backpropagation through time I

r---

oh 0 0 106 (1)
, _ 9o(uw) du W o(u)" _} /

oh_,  ou oh_, "™ ou '

-
-
| T — —— . —— . ————

Problem in many recurrent neural networks,

Especially pronounced in ElIman networks
(Vanilla RNNs) due to the sigmoid activation

fanatically chased



Issue with Recurrent Models

® Multiple steps of state overwriting makes it challenging to learn long-
range dependencies.

They tuned, discussed for a moment, then struck up a lively
jig. Everyone joined in, turning the courtyard into an even
more chaotic scene, people now dancing in circles, swinging
and spinning in circles, everyone making up their own dance
steps. | felt my feet tapping, my body wanting to move.
Aside from writing, | 've always loved dancing .

® Nearby words should affect each other more than farther ones, but RNNs
make it challenging to learn any long-range interactions

LAMBADA dataset, 2016



Gated Recurrent Neural Networks I

® Use gates to avoid dampening gradient signal every time step
ht — U(thxt + Whhht—l + bh) ht — ht—l @ f -+ funC(xt)
Elman Network Gated Network Abstraction

® Gate value f computes how much information from previous hidden state
moves to the next time step —> 0 < f < 1

® Because h,_; is no longer inside the activation tfunction, it is not
automatically constraineq, reducing vanishing gradients!

45



| ong Short Term Memory (LSTM) I

Gates:

]Ct — U(W/fx.xt + ‘A/fhht—l + bf)
I, = G(VVixxt + Wyh,_ + bi)

0, = o(Wyx,+ W,,h,_,+Db,)

6:t — ¢<chxt + Wchht—l + bc)
c, =1, XC+[fXc,_

h,= o0, X ¢(c,)

Iochre'ter and Schmidhuber, 1997)



Question

How can we use recurrent neural networks in practice?

Machine Translation involves more than estimating
the probability next word; requires generating a full
translation of a given context into another language




Fncoder-Decoder Models

® Encode a sequence fully with one model (encoder) and use its representation
to seed a second model that decodes another sequence (decoder)

A\

® Decoder is autoregressive, generates Y1

?

t t

Yo Y3
@ @
t t
Encoder Encoder Encoder Encoder Decoder Decoder Decoder Decoder
LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM
t t
Y1 Y2

one word at a time (like an LM)

?
Y3

X4 Yo

utskever et al., 2014)



Fncoder-Decoder Models

® c.g., machine translation l am Antoine <END>

A\

Y4
?

® Generate the words of the V1

?

t t

Yo Y3
@ @
t t
Encoder Encoder Encoder Encoder Decoder Decoder Decoder Decoder
LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM
t t
Y1 Y2

translated sequence of text

?
Y3

Yo

Je m’ appelle  Antoine <START> .
am Antoine

(Sutskever et al., 2014)




Fncoder-Decoder Models

® |nput doesn’t need to be text

Monkey on bike <END>
® c.g., image captioning 5 55 $5 5,
4 4 4 4
t t t t
Encoder Decoder Decoder Decoder Decoder
LSTM LSTM LSTM LSTM

?

Photo credit: J Hovenstine Studios ? ? ? ?
® Generate words of image Vo Vi Y, V3
description ‘
o <START> Monkey on bike

(Vinyals et al., 2014)



Bidirectional Encoders

® Decoder needs to be unidirectional (can’t know the future...)

® Encoder sequence representation augmented by encoding in both directions

Encoder
RNN

Encoder
RNN

Encoder

hbwd Encoder
4 RNN

RNN

Encoder

Encoder Encoder Encoder hfwd
RNN

RNN RNN RNN

(Schuster and Paliwal, 1997)



Bidirectional Encoders

® Decoder needs to be unidirectional (can’t know the future...)

® Encoder sequence representation augmented by encoding in both directions

Encoder
RNN

Encoder
RNN

Encoder

hbwd Encoder
4 RNN

wd. 1.bwd Decoder
RNN []Ef ’k%‘w ]_*»

LSTM

Encoder

Encoder Encoder Encoder hfwd
RNN t

RNN RNN RNN

(Schuster and Paliwal, 1997)



Other Resources of Interest

® Approaches for maintaining state and avoiding vanishing gradients
- Long Short-Term Memory (Hochreiter and Schmidhuber, 1997):

- QGated Recurrent Units (Cho et al., 2014):

® | STM: A Search Space Odyssey (Greft et al., 2015)

- Examine 5000 different modifications to LSTMs — none significantly
better than original architecture

I ® Only basics presented here today! Many offshoots of these techniques!



Recap

® Early neural language models (and n-gram models) sutfer from fixed
context windows

® Recurrent neural networks can theoretically learn to model an
unbounded context length using back propagation through time (BPTT)

® Practically, however, vanishing gradients stop many RNN architectures
from learning long-range dependencies

® RNNs (and modern variants) remain usetful for many sequence-to-
sequence tasks
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