
Deep Learning for
Natural Language Processing

Antoine Bosselut

Natural Language Processing

2

Enabling
Human-Machine

Collaboration

Search Engines

Dialogue Agents

Text Generation

Mining
Human Insights

Sentiment Analysis

Motivation Analysis

Emotion Detection

Accelerating
Human-Human
Communication

Machine Translation

Text Summarization

Information Extraction

Machine Translation

3

Conversational Systems

4

Question Answering

5

Text Generation

6

Next few weeks!

• Today: Deep Learning for Natural Language Processing

• In two weeks: Neural Text Generation

• Final week: Modern NLP & Ethical Implementation of NLP

Today’s Outline

• Introduction

• Section 1 - Neural NLP & Word Embeddings

• Section 2 - Recurrent Neural Networks for Sequence Modeling

• Section 3 - Attentive Neural Modeling with Transformers

• Exercise Session: Attention in Transformer Language Models

Part 1: Neural Embeddings

Section Outline

• New: Building our first neural classifier

• Review: sparse word vector representations

• New: Learning dense word vector representations - CBOW & Skipgram

A simple NLP model
• How do we represent natural language sequences for NLP problems?

Model

I really enjoyed the movie we watched on Saturday!

+/-

A simple NLP model
• How do we represent natural language sequences for NLP problems?

Model

I really enjoyed the movie we watched on Saturday!

+/-

…

In neural natural
language processing,
words are vectors!

Question

13

What words should we model as vectors?

Choosing a vocabulary
• Language contains many words (e.g., ~600,000 in English)

- What about other tokens: Capitalisation? Accents ? Typos!? Words in other languages!? In other
scripts!? Emojis !? Unicode !?

- Millions of potential unique tokens! Most rarely appear in our training data (Zipfian distribution)

- Model has limited capacity

14
https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words

Choosing a vocabulary
• Language contains many words (e.g., ~600,000 in English)

- What about other tokens: Capitalisation? Accents ? Typos!? Words in other languages!? In other
scripts!? Emojis !? Unicode !?

- Millions of potential unique tokens! Most rarely appear in our training data (Zipfian distribution)

- Model has limited capacity

• How should we select which tokens we want our model to process?

- CS-552: Modern NLP Week 13 - Tokenisation!

- For now, initialize a vocabulary V of tokens that we can represent as a vector

- Any token not in this vocabulary V is mapped to a special <UNK> token (e.g., unknown).

15
https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words

Question

16

How should we model a word as a vector?

Sparse Word Representations

• Define a vocabulary V

• Each word in the vocabulary is
represented by a sparse vector

• Dimensionality of sparse vector is
size of vocabulary (e.g., thousands,
possibly millions)

I

really

enjoyed

the

movie

!

wi ∈ {0,1}V

[0 … 0 0 0 1 … 0 0]

[0 … 1 … 0 0 0 0 0]

[0 … 0 0 0 1 0 … 0]

[0 … 0 1 0 0 0 … 0]

[0 … 0 0 0 0 0 … 1]

[1 … 0 0 0 0 0 0 0 0]

Word Vector Composition
• To represent sequences, beyond words, define a composition function over

sparse vectors

I really enjoyed the movie ! [1 … 1 1 0 1 … 0 1]

I really enjoyed the movie ! [0.01 … 0.1 0.1 0 0.001 … 0 0.5]

Simple
Counts

Weighted by
Corpus Statistics

(e.g., TF-IDF)

Many others…

Problem

With sparse vectors, similarity is a function of common words!

How do you learn learn similarity between words?

enjoyed

loved

[0 … 0 0 0 1 … 0 0]

[0 … 1 … 0 0 0 0 0]

sim(enjoyed, loved) = 0

Embeddings Goal

How do we train semantics-encoding embeddings of words?

Image Credit: https://towardsdatascience.com/legal-applications-of-neural-word-embeddings-556b7515012f

Dense Word Vectors
• Represent each word as a high-dimensional*, real-valued vector

- *Low-dimensional compared to V-dimension sparse representations, but still usually O(102 - 103)

• Similarity of vectors represents similarity of meaning for particular words

I

really

enjoyed

the

movie

!

[0.113 -0.782 1.893 0.984 6.349 …]

[0.906 0.661 -0.214 -0.894 -0.880 …]

[-0.842 0.647 -0.882 0.045 0.029 …]

[0.100 0.765 -0.333 -0.538 -0.150 …]

[0.104 -0.054 -0.268 -0.877 0.005 …]

[0.439 -0.577 -0.727 0.261 0.699 …]

word vectors

word embeddings

neural embeddings

dense embeddings

others…

A simple NLP model
• For each sequence , we have a corresponding sequence of embeddings

• Embeddings are indexed from shared embedding dictionary for all
items in vocabulary

S X

xt ∈ X 𝔼
V

22

I really enjoyed the movie we watched on Saturday!

…

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT

A simple NLP model
• For each sequence , we have a corresponding sequence of embeddings

• Embeddings are indexed from shared embedding dictionary for all
items in vocabulary

S X

xt ∈ X 𝔼
V

23

I really enjoyed the movie we watched on Saturday !

…

S1 =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT

We really loved a film we saw last Sunday !S2 =
Bolded words would index
the same embedding in 𝔼

A simple NLP model
• For each sequence , we have a corresponding sequence of embeddings S X

24

Model

I really enjoyed the movie we watched on Saturday!

…
We have our word

embeddings!

Now what?

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT

Question

25

What should we use as a model?

A simple NLP model
• Our model modifies and / or composes these word embeddings to

formulate a representation that allows it to predict the correct label

26

Model

I really enjoyed the movie we watched on Saturday!

+/-

…

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT

A simple NLP model
• Our model modifies and / or composes these word embeddings to

formulate a representation that allows it to predict the correct label

- Recurrent neural networks (RNNs) - Today!

- RNN variants (LSTM, GRU, etc.) - Today!

- Transformer - Today!

27

A simple NLP model

28

Sum-pool

I really enjoyed the movie we watched on Saturday!

+/-

…

We composed our embeddings
into a different representation!

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT

Notation: Typically, we represent
the output of a model as h (or o) .

hT =
T

∑
t=0

xt

Question

29

How do we convert the output of our model to a prediction?

Predicting the label

30

Sum-pool

I really enjoyed the movie we watched on Saturday!

+/-

…

S =

X = {x0 , x1 , . . . , xT}
x0 x1 xT−1 xT

hT =
T

∑
t=0

xt

Predicting the label

31

Sum-pool

I really enjoyed the movie we watched on Saturday!

+/-

…

S =

X = {x0 , x1 , . . . , xT}

x0 x1 xT−1 xT

hT =
T

∑
t=0

xt

Logistic Regression P(y) = σ(Wo hT)Use as the input features to a
classification algorithm!
hT

Learn using
backpropagation:

compute gradients of
loss with respect to

initial embeddings X

Learn embeddings
that allow you to do
the task successfully!

Question

32

What could be a better way to learn word embeddings?

–J.R. Firth, 1957

“You shall know a word by the company it keeps”

Context Representations

I really enjoyed the ____ we watched on Saturday!
The ___ growled at me, making me run away.

I need to go to the ____ to pick up some dinner.

Solution:

Rely on the context in which words occur to learn their meaning

Foundation of distributional semantics

Context is the set of words that occur nearby

Learning Word Embeddings
• Many options, huge area of research, but three common approaches

• Word2vec - Continuous Bag of Words (CBOW)

- Learn to predict missing word from surrounding window of words

• Word2vec - Skip-gram

- Learn to predict surrounding window of words from given word

• GloVe

- Not covered today

(Mikolov et al., 2013a; 2013b; Pennington et al., 2014)

Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

enjoyed the we watched

Projection

Sum

movie

Context:

(Mikolov et al., 2013a)

Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

enjoyed the we watched

Projection

Sum

movie

max P(movie |enjoyed, the, we, watched)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt |wt−2, wt−1, wt+1, wt+2)

max P(wt |{wx}x=t+2
x=t−2)

(Mikolov et al., 2013a)

Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

U ∈ ℝd×Vwx ∈ ℝ1×d

enjoyed the we watched

Projection

Sum

movie
P(wt |{wx}x=t+2

x=t−2) = softmax(U
t+2

∑
x = t − 2

x ≠ t

wx)

Projection

(Mikolov et al., 2013a)

Softmax Function
• The softmax function generates a probability distribution from the

elements of the vector it is given

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

softmax(a)i =
eai

∑|a|
j=1 eaj

V = [0.790 -0.851 0.506 0.767 -0.788 0.793 0.887 0.219 -0.052 0.461]

P(V) = [0.144 0.028 0.108 0.141 0.030 0.144 0.159 0.081 0.062 0.104]

Softmax(V)

Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

U ∈ ℝd×Vwx ∈ ℝ1×d

enjoyed the we watched

Projection

Sum

movie
P(wt |{wx}x=t+2

x=t−2) = softmax(U
t+2

∑
x = t − 2

x ≠ t

wx)

Projection

(Mikolov et al., 2013a)

Continuous Bag of Words (CBOW)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyed the we watched

Projection

Sum

movie

P(wt |{wx}x=t+2
x=t−2) = softmax(U

t+2

∑
x = t − 2

x ≠ t

wx) • Model is trained to maximise the
probability of the missing word

- For computational reasons, the model is
typically trained to minimise the negative
log probability of the missing word

• Here, we use a window of N=2, but
the window size is a hyperparameter

• For computational reasons, a
hierarchical softmax used to
compute distribution

(Mikolov et al., 2013a)

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

Projection

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

Context:

(Mikolov et al., 2013b)

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

max log P(wt−2, wt−1, wt+1, wt+2 |wt)

max (log P(wt−2 |wt) + log P(wt−1 |wt)

+log P(wt+1 |wt) + log P(wt+2 |wt))
Projection

(Mikolov et al., 2013b)

Context:

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

P(wx |wt) = softmax(Uwt)

U ∈ ℝd×Vwt ∈ ℝ1×d
Projection

Projection

(Mikolov et al., 2013b)

Context:

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

• Model is trained to minimise the
negative log probability of the
surrounding words

• Here, we use a window of N=2, but the
window size is a hyperparameter to set

• Typically, set large window (N=10), but
randomly select as dynamic
window size so that closer words
contribute more to learning

i ∈ [1,N]

Projection

(Mikolov et al., 2013b)

Context:

Question

What is the major conceptual difference between the CBOW
and Skipgram methods for training word embeddings?

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram vs. CBOW
• Question: Do you expect a difference between what is learned by CBOW

and Skipgram methods?

Projection

enjoyed the we watched

Projection

Sum

movie

(Mikolov et al., 2013b) (Mikolov et al., 2013a)

Example

48

CBOW Skip-gram

Recap

• Neural NLP: Words are vectors!

• Word embeddings can be learned in a self-supervised manner from large
quantities of raw text

• Two algorithms: Continuous Bag of Words (CBOW) and Skip-gram

Resources
• word2vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/

• Gensim: https://radimrehurek.com/gensim/

50

https://fasttext.cc/

References
• Firth, J.R. (1957). A Synopsis of Linguistic Theory, 1930-1955.

• Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013a). Efficient Estimation of Word
Representations in Vector Space. International Conference on Learning Representations.

• Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013b). Distributed Representations of
Words and Phrases and their Compositionality. ArXiv, abs/1310.4546.

• Pennington, J., Socher, R., & Manning, C.D. (2014). GloVe: Global Vectors for Word
Representation. Conference on Empirical Methods in Natural Language Processing.

• Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword
information. Transactions of the association for computational linguistics.

• Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2018). Advances in pre-training
distributed word representations. International Conference on Language Resources and Evaluation.

51

Deep Learning for
Natural Language Processing

Antoine Bosselut

Part 3: Attentive Neural
Modeling with Transformers

Section Outline

• Background: Long-range Dependency Modeling

• Content: Attention, Self-Attention, Multi-headed Attention, Transformer
Blocks, Transformers

• Exercise Session: Visualizing Transformer Attention

Issue with Recurrent Models
• Multiple steps of state overwriting makes it challenging to learn long-

range dependencies.

• Nearby words should affect each other more than farther ones, but RNNs
make it challenging to learn any long-range interactions

They tuned, discussed for a moment, then struck up a lively
jig. Everyone joined in, turning the courtyard into an even
more chaotic scene, people now dancing in circles, swinging
and spinning in circles, everyone making up their own dance
steps. I felt my feet tapping, my body wanting to move.
Aside from writing, I ’ve always loved dancing .

LAMBADA dataset, 2016

Toy Example
• The model sees 4 extra tokens:

“m’”, “appelle”, “Antoine”,
<START> before generating the
“I” correspond to “Je”

Decoder
RNN

Decoder
RNN

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Decoder
RNN

Decoder
RNN

y0 ̂y1 ̂y2 ̂y3

m’ appelle AntoineJe <START> am AntoineI

am AntoineI <END>

(Sutskever et al., 2014)

Toy Example

Decoder
RNN

Decoder
RNN

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Decoder
RNN

Decoder
RNN

y0 ̂y1 ̂y2 ̂y3

m’ appelle AntoineJe <START> am AntoineI

am AntoineI <END>

(Sutskever et al., 2014)

How can we reduce this temporal
bottleneck ?

• The model sees 4 extra tokens:
“m’”, “appelle”, “Antoine”,
<START> before generating the
“I” correspond to “Je”

Attentive Encoder-Decoder Models

• Recall: At each encoder
time step, there is an
output of the RNN!

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

x2 x3 x4x1 y0
(Bahdanau et al., 2015)

he
1 he

2 he
3 he

4

hd
1

Attentive Encoder-Decoder Models

• Recall: At each encoder
time step, there is an
output of the RNN!

• Idea: Use the output of the
Decoder LSTM to compute
an attention (i.e., a mixture)
over all the outputs of the
encoder LSTM

• Intuition: focus on different
parts of the input at each
time step

he
t

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Attention

x2 x3 x4x1 y0

̂y1

(Bahdanau et al., 2015)

he
1 he

2 he
3 he

4

What is attention?
• Attention is a weighted average over a set of inputs

• How should we compute this weighted average?

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Decoder
RNN

he
2 he

3 he
4he

1 hd
1

he
t = encoder output hidden states

• Compute pairwise similarity between each encoder hidden state and
decoder hidden state (“idea of what to decode”)

Attention Function

he
t = encoder output hidden states hd

t = decoder output hidden state

Also known as a “query”Also known as a “keys”

he
1 he

2 he
3 he

4

• Compute pairwise similarity between each encoder hidden state and
decoder hidden state (“idea of what to decode”)

• We have a single query vector for multiple key vectors

Attention Function

he
t = encoder output hidden states hd

t = decoder output hidden state

he
1 hd

1

,()fa1 =

he
2 hd

1

,()fa2 =

he
3 hd

1

,()fa3 =

Also known as a “query”Also known as a “keys”

he
4 hd

1

,()fa4 =

Attention Function
• Pairwise scores can be computed using a variety of functions

Attention Function Formula

Multiplicative

Linear

Scaled Dot Product

a = heWhd

a = vTϕ(W[he; hd])

a =
(Whe)T(Uhd)

d

Attention Function
• Compute pairwise similarity between each encoder hidden state and

decoder hidden state (“idea of what to decode”)

• Convert pairwise similarity scores to probability distribution (using
softmax!) over encoder hidden states and compute weighted average:

he
1 hd

1

,()f
he

2 hd
1

,()f
he

3 hd
1

,()fa1 = a2 = a3 =

αt =
eat

∑j eajSoftmax! Here is known
as the “value”

he
th̃d

1 =
T

∑
t=1

αthe
t

αt

Attentive Encoder-Decoder Models

• Intuition: contains
information about hidden
states that got high
attention

• Typically, is concatenated
(or composed in some other
manner) with (the original
decoder state) before being
passed to the output layer

• Output layer predicts the
most likely output token

h̃d
1

h̃d
1

hd
1

̂y1

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Attention

x2 x3 x4x1 y0

̂y1

h̃d
1

he
1 he

2 he
3 he

4

(Bahdanau et al., 2015)

Output

hd
1

[hd
1 ; h̃d

1]

h̃d
1 =

T

∑
t=1

αthe
t

αt

Attentive Encoder-Decoder Models

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Attention

Decoder
LSTM

Attention

x2 x3 x4x1 y0

̂y2

̂y1

he
1 he

2 he
3 he

4

(Bahdanau et al., 2015)

̂y1

Output Output

Repeat in
next time step
to get new
distribution
over states

αt

Attention distribution
changes at next time step

h̃d
2

hd
2

[hd
2 ; h̃d

2]

Attentive Encoder-Decoder Models

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Attention

Decoder
LSTM

Attention

x2 x3 x4x1 y0 ̂y1

Attention

Decoder
LSTM

̂y3

̂y2

he
1 he

2 he
3 he

4

(Bahdanau et al., 2015)

̂y2̂y1

Output Output Outputαt

and the next one…

h̃d
3

hd
3

[hd
3 ; h̃d

3]

And so
forth…

Attention Recap
• Main Idea: Decoder computes a weighted sum of encoder outputs

• Compute pairwise score between each encoder hidden state and initial
decoder hidden state

• Many possible functions for computing scores (dot product, bilinear, etc.)

• Temporal Bottleneck Fixed! Direct connection between decoder and
ALL encoder states

he
t = encoder output hidden states hd

t = decoder initial hidden state

Question

Do any other inefficiencies remain in our
sequence to sequence pipelines?

Encoder is still Recurrent
• Encoder: Recurrent functions can’t be parallelized because previous state

needs to be computed to encode next one

• Problem: Encoder hidden states must still be computed in series

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder is still Recurrent
• Encoder: Recurrent functions can’t be parallelized because previous state

needs to be computed to encode next one

• Problem: Encoder hidden states must still be computed in series

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Who can think of a task where this might be a problem?

Solution:
Transformers!

Full Transformer

• Made up of encoder and decoder

• Both encoder and decoder made up of multiple
cascaded transformer blocks

- slightly different architecture in encoder and
decoder transformer blocks

• Blocks generally made up multi-headed attention
layers (self-attention) and feedforward layers

• No recurrent computations!

(Vaswani et al., 2017)

Encode sequences with self-attention

Self-Attention Toy Example
• Original Idea: Use decoder hidden state to compute attention

distribution over encoder hidden states

• New Idea: Could we use encoder hidden states to compute attention
distribution over themselves?

• Ditch recurrence and compute encoder state representations in parallel!

hℓ
t = encoder hidden state at time step t at layer ℓ

h0
2 h0

3 h0
4h0

1
“query”“key” “key” “key”

Recap: Attention with RNNs
• Compute pairwise similarity between each encoder hidden state and

decoder hidden state (“idea of what to decode”)

• Convert pairwise similarity scores to probability distribution (using
softmax!) over encoder hidden states and compute weighted average:

he
1 hd

1

,()f
he

2 hd
1

,()f
he

3 hd
1

,()fa1 = a2 = a3 =

αt =
eat

∑j eajSoftmax! Here is known
as the “value”

he
th̃d

1 =
T

∑
t=1

αthe
t

αt

“query”“key” “query”“key” “query”“key”

Self-Attention Toy Example
• For a particular encoder time step, compute pairwise score between this

hidden state (the query) and the other encoder hidden states

h0
2 h0

3 h0
4h0

1

Self
Attention

h̃1
3

“query”“key” “key” “key”

Self-Attention Toy Example
hℓ

t = encoder hidden state at time step t at layer ℓ

h0
1 h0

3

,()fa31 =

αst =
east

∑j easj
h̃ℓ

s =
T

∑
t=1

αst(WVhℓ
t)ast =

(WQhℓ
s)T(WKhℓ

t)

d

hℓ
t hℓ

s

,()fast =

“query”“key” “query”“key”

Compute pairwise scores Get attention
distribution

Attend to values to
get weighted sum

Self-Attention Toy Example
hℓ

t = encoder hidden state at time step t at layer ℓ

h0
1 h0

3

,()fa31 =

αst =
east

∑j easj
h̃ℓ

s =
T

∑
t=1

αst(WVhℓ
t)ast =

(WQhℓ
s)T(WKhℓ

t)

d

hℓ
t hℓ

s

,()fast =

{1, …, t, …, T}
includes s!

Self-attention!

“query”“key” “query”“key”

Compute pairwise scores Get attention
distribution

Attend to values to
get weighted sum

Self-Attention Toy Example

αst =
east

∑j easj

ast =
(WQhℓ

s)T(WKhℓ
t)

d
h̃ℓ

s =
T

∑
t=1

αst(WVhℓ
t)

h0
2 h0

3 h0
4h0

1

Self
Attention

h̃1
3

“query”“key” “key” “key”

Compute pairwise scores

Get attention distribution

Attend to values to
get weighted sum

α = softmax(a)

h̃ℓ = WOα(VWV)a =
(WQq)(WKK)

d
q = hℓ

s

K = V = {hℓ
t }T

t=0

Self-Attention Toy Example

h0
2 h0

3 h0
4h0

1

Self
Attention

h̃1
3

For each attention computation, every element is a key and value, and one element is a query

Compute pairwise scores

Get attention distribution

Attend to values to
get weighted sum

“keys”

“values”

“query”

“query”
“key” “key” “key”“key”

“value” “value” “value” “value”

α = softmax(a)

h̃ℓ = WOα(VWV)a =
(WQq)(WKK)

d
q = hℓ

s

K = V = {hℓ
t }T

t=0

Self-Attention Toy Example

h0
2 h0

3 h0
4h0

1

Self
Attention

h̃1
2

For each attention computation, every element is a key and value, and one element is a query

Compute pairwise scores

Get attention distribution

Attend to values to
get weighted sum

“keys”

“values”

“query”

“query”
“key” “key” “key”“key”

“value” “value” “value” “value”

α = softmax(a)

h̃ℓ = WOα(VWV)a =
(WQq)(WKK)

d
q = hℓ

s

K = V = {hℓ
t }T

t=0

Self-Attention Toy Example

h0
2 h0

3 h0
4h0

1

Self
Attention

h̃1
4

“keys”

“values”

“query”

For each attention computation, every element is a key and value, and one element is a query

Compute pairwise scores

Get attention distribution

Attend to values to
get weighted sum

“query”
“key” “key” “key”“key”

“value” “value” “value” “value”

h0
2 h0

3 h0
4h0

1

Self
Attention

h̃1
3

Self
Attention

Self
Attention

Self
Attention

h̃1
4h̃1

2h̃1
1

h̃1
1 = Attention(h0

1 , {h0
t }t=3

t=0)
h̃2

1 = Attention(h0
2 , {h0

t }t=3
t=0)

h̃3
1 = Attention(h0

3 , {h0
t }t=3

t=0)
h̃4

1 = Attention(h0
4 , {h0

t }t=3
t=0)

Self-Attention Toy Example
• Every token is a query! Recompute self-attention value for each position in

the sequence

Question

What are two advantages of self-attention
over recurrent models?

Self-Attention Recap

• Computed in parallel — no
previous time step computation
needed for the next one

• No long-term dependencies
— direct connection between
all time-steps in sequence

h0
2 h0

3 h0
4h0

1

Self
Attention

h̃1
3

Self
Attention

Self
Attention

Self
Attention

h̃1
4h̃1

2h̃1
1

Multi-Headed Self-Attention
• Project V, K, Q into H sub-vectors where H is the

number of “heads”

• Compute attention weights separately for each
sub-vector

• Concatenate sub-vectors for each head and project

h̃ℓ
i = α(VWV

i)

ai =
(WQ

i q)(WK
i K)

d/H

h̃ℓ = WO[h̃ℓ
0; . . . ; h̃ℓ

i ; . . . ; h̃ℓ
H]

Vaswani et al., 2017

αi = softmax(ai)

Transformer Block
• Self-attention is the main innovation of the

popular transformer model!

• Each transformer block receives as input the
outputs of the previous layer at every time step

• Each block is composed of a multi-headed
attention, a layer normalisation, a feedforward
network, and another layer normalisation

• There are residual connections before every
normalisation layer

• Layer normalisation + residual connections
don’t add capacity, but make training easier

Vaswani et al., 2017

Full Transformer
• Full transformer encoder is multiple cascaded

transformer blocks

- build up compositional representations of
inputs

• No need to propagate state forward in time

- states at each time step computed in
parallel!

• Transformer decoder (right) similar to encoder

- second attention layer to compute weighted
average of encoder states before FFN

Recurrent models provided word order information

Does self-attention provide word order information?

Vaswani et al., 2017

Position Embeddings
• Self-attention provides no word order

information

- Computes weighted average over set of
vectors

• Word order is pretty crucial to understanding
language

- How do we fix this?

• Add an additional embedding to the input
word that represents a position in the sequence

Vaswani et al., 2017

Position Embeddings
• Self-attention provides no word order

information

- Computes weighted average over set of
vectors

• Word order is pretty crucial to understanding
language

- How do we fix this?

• Add an additional embedding to the input
word that represents a position in the sequence

Vaswani et al., 2017

• Early position embeddings encoded a sinusoid
function that was offset by a phase shift
proportional to sequence position

• In practice, position embeddings are learned
scratch or more modern methods are used
(e.g., Rotary position embeddings, AliBi)

Other Resources of Interest

• The Annotated Transformer

- https://nlp.seas.harvard.edu/2018/04/03/attention.html

• The Illustrated Transformer

- https://jalammar.github.io/illustrated-transformer/

• Only basics presented here today! Many modifications to initial
transformers exist

Recap
• Temporal Bottleneck: Vanishing gradients stop many RNN architectures from

learning long-range dependencies

• Parallelisation Bottleneck: RNN states depend on previous time step hidden state,
so must be computed in series

• Attention: Direct connections between output states and inputs (solves temporal
bottleneck)

• Self-Attention: Remove recurrence, allowing parallel computation

• Modern Transformers use attention as primary function, but require position
embeddings to capture sequence order

References

• Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q.N., Bernardi, R.,
Pezzelle, S., Baroni, M., Boleda, G., & Fernández, R. (2016). The
LAMBADA dataset: Word prediction requiring a broad discourse
context. ArXiv, abs/1606.06031.

• Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR, abs/1409.0473.

• Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need. ArXiv,
abs/1706.03762.

Deep Learning for
Natural Language Processing

Antoine Bosselut

Part 2: Recurrent Neural
Networks for Sequence Modeling

Section Outline

• Background: Language Modeling, Feedforward Neural Networks,
Backpropagation

• Content - Models: Recurrent Neural Networks, Encoder-Decoders

• Content - Algorithms: Backpropagation through Time, Vanishing
Gradients

Language Modeling
• Given a subsequence, predict the next word: The cat chased the _____

Fixed Context Language Models
• Given a subsequence, predict the next word: The cat chased the _____

The cat chased the

Concatenation

Feedforward Neural Network

mouse

P(y) = softmax(bo + Wo tanh(bh + Whx))

(Bengio et al., 2003)

• Given a subsequence, predict the next word:

The starving cat frantically chased the elusive _____

cat chased the elusive

Concatenation

Feedforward Neural Network

dream

The starving frantically

Fixed Context Language Models

(Bengio et al., 2003)

Problem

Fixed context windows limit language modelling capacity

How can we extend to arbitrary length sequences?

Recurrent Neural Networks
• Solution: Recurrent neural networks — NNs with feedback loops

8

ht

Output

State

Input
xt

zt

Unrolling the RNN

xt

ht

zt

xt−1

ht−1

zt−1

xt+1

zt+1

ht−2 ht+1

Unrolling the RNN across all time steps gives full computation graph

9

Allows for learning from entire sequence history, regardless of length

h3

x2 x3 x4 x5x1

h2 h4 h5h1

cat chasedThe starving fanatically

Unrolling the RNN

h3

x2 x3 x4 x5x1

h2 h4 h5h1

cat chasedThe starving fanatically

Unrolling the RNN

Unrolling the RNN

h1 h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x6

Unrolling the RNN

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x6

Unrolling the RNN

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x7

elusive

x6

Unrolling the RNN

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x7

mouse

x6

z7

Classification
• Classifier is just an output projection followed by a softmax!

16

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x7

mouse

x6

Classifier

z7

P(y) = σ(Wo zT)
Binary

P(y) = softmax(Wo zT)
Multi-class

̂y

Question

17

Why would you use the output of the last
recurrent unit as the one to predict a label?

Classical RNN: Elman Network

18

ht

xt

zt

ht−1

xt−1

zt−1

ht−2

zt = σ(Wzhht + bz)
ht = σ(Whxxt + Whhht−1 + bh)

(Elman, 1990)

What should be? h0

Backpropagation Review: FFNs

x1

x2

x3

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

wℓ=0
11

wℓ=0
33

ℒ(̂y, y) = y log P(̂y)

Cross-entropy
loss function:

x

Backpropagation Review: FFNs
h2

̂y

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

ℒ(̂y, y) = y log P(̂y)

Backpropagation Review: FFNs
h2

̂y

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

ℒ(̂y, y) = y log P(̂y)

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

Depends on label y

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

Depends on label y

Depends on ϕo

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ22(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ22(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

2

Depends on label y

Depends on ϕo

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ(̂y, y)
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1
∂ϕ12(v)

∂v
wℓ=1

11

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ(̂y, y)
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1
∂ϕ12(v)

∂v
wℓ=1

11

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ(̂y, y)
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1
∂ϕ12(v)

∂v
wℓ=1

11

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

Depends on ϕ12

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ(̂y, y)
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1
∂ϕ12(v)

∂v
wℓ=1

11

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

Depends on ϕ12

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ(̂y, y)
∂ϕ21(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ21(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1
∂ϕ12(v)

∂v
wℓ=1

21

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

Depends on ϕ12

Question

30

How would we extend backpropagation
to a recurrent neural network?

Recall
• RNN can be unrolled to a feedforward neural network

• Depth of feedforward neural network depends on length of the sequence

31

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x7

elusive

x6

Backpropagation through Time
zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)

xt

zt

xt−1

ht−1ht−2 ht

∂zt

∂ht
=

∂σ(v)
∂v

∂v
∂ht

=
∂σ(v)

∂v
Wzh

Backpropagation through Time
zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)

∂zt

∂ht
=

∂σ(v)
∂v

∂v
∂ht

=
∂σ(v)

∂v
Wzh

v = Wzhht + bz

u = Whxxt + Whhht−1 + bh

zt = σ(v)

ht = σ(u)

xt

zt

xt−1

ht−1ht−2 ht

∂zt

∂ht

∂zt

∂ht

Backpropagation through Time
zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(u)

∂u
Whh

∂zt

∂ht
=

∂σ(v)
∂v

∂v
∂ht

=
∂σ(v)

∂v
Wzh

v = Wzhht + bz

u = Whxxt + Whhht−1 + bh

zt = σ(v)

ht = σ(u)

xt

zt

xt−1

ht−1ht−2 ht

∂ht

∂ht−1

∂zt

∂ht

Backpropagation through Time
zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)

∂zt

∂ht
=

∂σ(v)
∂v

∂v
∂ht

=
∂σ(v)

∂v
Wzh

∂zt

∂ht−1
=

∂zt

∂ht

∂ht

∂ht−1
=

∂σ(v)
∂v

∂v
∂ht

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(v)

∂v
Wzh

∂σ(u)
∂u

Whh

v = Wzhht + bz

u = Whxxt + Whhht−1 + bh

zt = σ(v)

ht = σ(u)

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(u)

∂u
Whh

xt

zt

xt−1

ht−1ht−2 ht

∂ht

∂ht−1

∂zt

∂ht

Backpropagation through Time
zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)

∂zt

∂ht
=

∂σ(v)
∂v

∂v
∂ht

=
∂σ(v)

∂v
Wzh

∂zt

∂ht−1
=

∂zt

∂ht

∂ht

∂ht−1
=

∂σ(v)
∂v

∂v
∂ht

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(v)

∂v
Wzh

∂σ(u)
∂u

Whh

v = Wzhht + bz

u = Whxxt + Whhht−1 + bh

zt = σ(v)

ht = σ(u)

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(u)

∂u
Whh

xt

zt

xt−1

ht−1ht−2 ht

∂ht

∂ht−1

∂zt

∂ht

Backpropagation through Time
zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)

∂zt

∂ht
=

∂σ(vt)
∂vt

∂vt

∂ht
=

∂σ(vt)
∂vt

Wzh

vt = Wzhht + bz

ut = Whxxt + Whhht−1 + bh

zt = σ(vt)

ht = σ(ut)

∂ht−1

∂ht−2
=

∂σ(ut−1)
∂ut−1

∂ut−1

∂ht−2
=

∂σ(ut−1)
∂ut−1

Whh

∂ht

∂ht−1
=

∂σ(ut)
∂ut

∂ut

∂ht−1
=

∂σ(ut)
∂ut

Whh

∂zt

∂ht−1
=

∂zt

∂ht

∂ht

∂ht−1

∂ht−1

∂ht−2
=

∂σ(vt)
∂vt

Wzh
∂σ(ut)

∂ut
Whh

∂σ(ut−1)
∂ut−1

Whh

xt

zt

xt−1

ht−1ht−2 ht

∂ht

∂ht−1

∂ht−1

∂ht−2

∂zt

∂ht

Backpropagation through Time
zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)

∂zt

∂ht
=

∂σ(vt)
∂vt

∂vt

∂ht
=

∂σ(vt)
∂vt

Wzh

vt = Wzhht + bz

ut = Whxxt + Whhht−1 + bh

zt = σ(vt)

ht = σ(ut)

∂ht−1

∂ht−2
=

∂σ(ut−1)
∂ut−1

∂ut−1

∂ht−2
=

∂σ(ut−1)
∂ut−1

Whh

∂ht

∂ht−1
=

∂σ(ut)
∂ut

∂ut

∂ht−1
=

∂σ(ut)
∂ut

Whh

∂zt

∂ht−1
=

∂zt

∂ht

∂ht

∂ht−1

∂ht−1

∂ht−2
=

∂σ(vt)
∂vt

Wzh
∂σ(ut)

∂ut
Whh

∂σ(ut−1)
∂ut−1

Whh

Note that these are
actually the same matrix

xt

zt

xt−1

ht−1ht−2 ht

∂ht

∂ht−1

∂ht−1

∂ht−2

Backpropagation through time

h6

the

h3

x3 x4 x5

h2

h4 h5

cat chasedfanatically

x7

elusive

x6

z7

mouseGradient flow

Output flow

∂h7

∂h6

∂h6

∂h5

∂h5

∂h4
∂h4

∂h3

∂h3

∂h2

∂h7

∂x7

∂h6

∂x6

∂h5

∂x5

∂h4

∂x4

∂h3

∂x3

Summary

• Neural language models allow us to share information among similar
sequences by learning neural representations that similarly represent them

• Problem: Fixed context language models can only process a limited
window of the word history at a time

• Solution: recurrent neural networks can theoretically learn to model an
unbounded context length

40

Vanishing Gradients
• Learning Problem: Long unrolled networks will crush gradients that

backpropagate to earlier time steps

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

= Whh
∂σ(u)

∂u

ht = σ(Whxxt + Whhht−1 + bh)
u = Whxxt + Whhht−1 + bh

Backpropagation through time

h6

the

h3

x3 x4 x5

h2

h4 h5

cat chasedfanatically

x7

elusive

x6

z7

Gradient flow

Output flow

∂h7

∂h6

∂h6

∂h5

∂h5

∂h4

∂h4

∂h3

∂h3

∂h2

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

= Whh
∂σ(u)

∂u

Backpropagation through time

h6

the

h3

x3 x4 x5

h2

h4 h5

cat chasedfanatically

x7

elusive

x6

z7

Gradient flow

Output flow

∂h7

∂h6

∂h6

∂h5

∂h5

∂h4

∂h4

∂h3

∂h3

∂h2

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

= Whh
∂σ(u)

∂u

Problem in many recurrent neural networks,

Especially pronounced in Elman networks
(Vanilla RNNs) due to the sigmoid activation

Issue with Recurrent Models
• Multiple steps of state overwriting makes it challenging to learn long-

range dependencies.

• Nearby words should affect each other more than farther ones, but RNNs
make it challenging to learn any long-range interactions

They tuned, discussed for a moment, then struck up a lively
jig. Everyone joined in, turning the courtyard into an even
more chaotic scene, people now dancing in circles, swinging
and spinning in circles, everyone making up their own dance
steps. I felt my feet tapping, my body wanting to move.
Aside from writing, I ’ve always loved dancing .

LAMBADA dataset, 2016

Gated Recurrent Neural Networks
• Use gates to avoid dampening gradient signal every time step

 Elman Network Gated Network Abstraction

• Gate value f computes how much information from previous hidden state
moves to the next time step —> 0 < f < 1

• Because is no longer inside the activation function, it is not
automatically constrained, reducing vanishing gradients!

ht−1

45

ht = σ(Whxxt + Whhht−1 + bh) ht = ht−1 ⊙ f + func(xt)

Long Short Term Memory (LSTM)

xt
ht

σ σ

σ
ct−1

c̃t

ft

it ot

ϕ ϕ

ft = σ(Wfxxt + Wfhht−1 + bf)
it = σ(Wixxt + Wihht−1 + bi)
ot = σ(Woxxt + Wohht−1 + bo)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)

ct

ht−1

ht−1ht−1

ct = it × c̃t + ft × ct−1

ht = ot × ϕ(ct)

Gates:

(Hochreiter and Schmidhuber, 1997)

Question

How can we use recurrent neural networks in practice?

Machine Translation involves more than estimating
the probability next word; requires generating a full
translation of a given context into another language

Encoder-Decoder Models
• Encode a sequence fully with one model (encoder) and use its representation

to seed a second model that decodes another sequence (decoder)

• Decoder is autoregressive, generates
one word at a time (like an LM)

Decoder
LSTM

Decoder
LSTM

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Decoder
LSTM

y0 ̂y1 ̂y2 ̂y3

(Sutskever et al., 2014)

Encoder-Decoder Models
• e.g., machine translation

• Generate the words of the
translated sequence of text

Decoder
LSTM

Decoder
LSTM

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Decoder
LSTM

y0 ̂y1 ̂y2 ̂y3

m’ appelle AntoineJe <START>
am AntoineI

am AntoineI <END>

(Sutskever et al., 2014)

Encoder-Decoder Models
• Input doesn’t need to be text

• e.g., image captioning

• Generate words of image
description

Decoder
LSTM

Decoder
LSTM

̂y1 ̂y2 ̂y3 ̂y4

Decoder
LSTM

Decoder
LSTM

y0 ̂y1 ̂y2 ̂y3

<START>
on bikeMonkey

on bikeMonkey <END>

Image
Encoder
(CNN)

Photo credit: J Hovenstine Studios

(Vinyals et al., 2014)

Bidirectional Encoders
• Decoder needs to be unidirectional (can’t know the future…)

• Encoder sequence representation augmented by encoding in both directions

x2 x3 x4x1

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

hfwd
t

hbwd
t

(Schuster and Paliwal, 1997)

• Decoder needs to be unidirectional (can’t know the future…)

• Encoder sequence representation augmented by encoding in both directions

x2 x3 x4x1

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

Encoder
RNN

hfwd
t

hbwd
t

Decoder
LSTM[hfwd

t ; hbwd
t]

(Schuster and Paliwal, 1997)

Bidirectional Encoders

Other Resources of Interest
• Approaches for maintaining state and avoiding vanishing gradients

- Long Short-Term Memory (Hochreiter and Schmidhuber, 1997):

- Gated Recurrent Units (Cho et al., 2014):

• LSTM: A Search Space Odyssey (Greff et al., 2015)

- Examine 5000 different modifications to LSTMs — none significantly
better than original architecture

• Only basics presented here today! Many offshoots of these techniques!

Recap
• Early neural language models (and n-gram models) suffer from fixed

context windows

• Recurrent neural networks can theoretically learn to model an
unbounded context length using back propagation through time (BPTT)

• Practically, however, vanishing gradients stop many RNN architectures
from learning long-range dependencies

• RNNs (and modern variants) remain useful for many sequence-to-
sequence tasks

References
• Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A Neural Probabilistic Language Model. Journal of machine learning

research.

• Elman, J.L. (1990). Finding Structure in Time. Cogn. Sci., 14, 179-211.

• Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11),
2673–2681.

• Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9, 1735-1780.

• Cho, K., Merrienboer, B.V., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation. Conference on Empirical Methods in Natural
Language Processing.

• Sutskever, I., Vinyals, O., & Le, Q.V. (2014). Sequence to Sequence Learning with Neural Networks. NIPS.

• Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2014). Show and tell: A neural image caption generator. 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 3156-3164.

• Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., & Schmidhuber, J. (2015). LSTM: A Search Space Odyssey. IEEE
Transactions on Neural Networks and Learning Systems, 28, 2222-2232.

