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Question Answering

what is the tallest mountain in europe ? X

Q Al &) Images ) Maps (& News [») Videos : More Tools

About 12'400°'000 results (1.10 seconds)

Europe / Mountains / Maximal / Elevation

Mount Elbrus
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Mount Dykh-Tau Shkhara Koshtan-Tau Mount Alps Mont Blanc
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who is the president of switzerland ? X

Q Al [Z)Images @ News { Maps [+) Videos : More Tools

About 415'000'000 results (0.82 seconds)

Guy Parmelin

The President of the Swiss Confederation in 2021 is Guy Parmelin from the canton of Vaud. He was
elected on 9 December 2020. The President’'s department in 2021 is the Federal Department of
Economic Affairs, Education and Research EAER.

https://www.admin.ch » gov » start » federal-presidency
Presidential year 2021
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| ecture Outline

® Introduction

® Section 1 - Neural Embeddings

® Section 2 - Recurrent Neural Networks for Sequence Modeling
® Section 3 - Attentive Neural Modeling with Transtformers

® Section 4 - Modern NLP: What comes next?



Part 1: Neural Embeddings



Section Outline

® Review: sparse word vector representations
® New: Dense word vector representations - CBOW & Skipgram

® Demo: Similar words for different embedding learning algorithms



Word Representations

® How do we represent natural language sequences for NLP problems?
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| really enjoyed the movie we watched on Saturday!



Sparse Word Representations

® Define a vocabulary V

® Fach word in the vocabulary is
represented by a sparse vector

® Dimensionality of sparse vector is
size of vocabulary (e.g., thousands,
possibly millions)

I

really
enjoyed
the

movie

!

wW; € (0,1}

— [0...0001...00]
— [0...1...00000]
— [0...00010...0]
— [0...01000...0]
— [0...00000...1]
— [1...0000000O0]



Word Vector Composition

® To represent sequences, beyond words, define a composition function over
sparse vectors

, , Simple
| reall d th | — 1...17101...01
really enjoyed the movie [ ] Counts
| really enjoyed the movie! = [0.01 ... 0.1 0.1 00.001 ...00.5]
Weighted by

Corpus Statistics

Many others...



Problem

Similarity is only a function of common words!

How do you learn learn similarity between words?

enjoyed ——» [0...0001...00]

loved  =—b> [0...1...00000]

sim( enjoyed, loved) =0



Fmbeddings Goal
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How do we train semantics-encoding embeddings of words?

Image Credit: https://towardsdatascience.com/legal-applications-of-neural-word-embeddings-556b7515012f



"You shall know a word by the company it keeps”

—J.R. Firth, 1957



Context Representations

Solution:

Rely on the context in which words occur to learn their meaning

Context is the set of words that occur nearby

| really enjoyed the we watched on Saturday!

The growled at me, making me run away.

| need to go to the to pick up some dinner.




Context Representations

Solution:

Rely on the context in which words occur to learn their meaning

Context is the set of words that occur nearby

| really enjoyed the we watched on Saturday!
The growled at me, making me run away.
| need to go to the to pick up some dinner.

Foundation of distributional semantics



Dense Word Vectors

® Represent each word as a high-dimensional*, real-valued vector

- *Low-dimensional compared to V-dimension sparse representations, but still usually O(102- 103)

|  — [0.113 -0.782 1.893 0.984 6.349 ...]
word vectors

really — =—— [ 0.906 0.661 -0.214 -0.894 -0.880 ...]
word embeddings

enjoyed —»  [-0.842 0.647 -0.882 0.045 0.029 ...]

neural embeddings

the —=—> [0.100 0.765 -0.333 -0.538 -0.150 ...]
dense embeddings
movie =~ =—— [0.104 -0.054 -0.268 -0.877 0.005 ...]

others...
| — [ 0.439 -0.577 -0.727 0.261 0.699 ...]

® Similarity of vectors represents similarity of meaning for particular words



Learning Word Embeddings

® Many options, but three common approaches

® Word2vec - Continuous Bag of Words (CBOW)

- Learn to predict missing word from surrounding window of words

® Word2vec - Skip-gram

- Learn to predict surrounding window of words from given word

® GloVe

- Not covered today



Continuous Bag ot Words (CBOW)

® Predict the missing word from a window of surrounding words

movie

T

1

Sum

enjoyed the we watched




Continuous Bag ot Words (CBOW)

® Predict the missing word from a window of surrounding words

max P(movie | enjoyed, the, we, watched)

movie

5 max P (Wt ‘ W2 W15 Wt+1’ Wt+2)
PrOJectlon max P (Wt ‘ {W x:;‘—l—%
m 3
P(w,| {w }'="*2) = softmax (U D wx)
enjoyed watched x=t—2

X #t



Continuous Bag ot Words (CBOW)

® Predict the missing word from a window of surrounding words

t 2
P(w,| {wx}x‘f”) = softmax (U Wx>
xX=t—2
X #t

Prolectlon

m o
e
lal 4.
J
Sl e

movie

c:b

enjoyed watched

softmax(a); =




Softmax Function

® The softmax function generates a probability distribution from the
elements of the vector it is given

d

e l
la|l 4.
J
Tl e

softmax(a); =

V=[0.790 -0.851 0.506 0.767 -0.788 0.793 0.887 0.219 -0.052 0.461 ]

Softmax(V)

P(V) =10.144 0.028 0.108 0.141 0.030 0.144 0.159 0.081 0.062 0.104 ]



Continuous Bag ot Words (CBOW)

+2
xX=1+2\ __
P(Wt‘ {Wx} ) softmax|( U Z W, ® Model is trained to maximise the
x=1—-2 probability of the missing word
X #t
movie - For computation reasons, the model is
typically trained to minimise the negative
@ log probability of the missing word
PrOJectlon ® Here, we use a window of N=2, but
the window size is a hyperparameter
‘m ® For computational reasons, a
hierarchical softmax used to
enjoyed watched

compute distribution



® \We can also learn embeddings by predicting the surrounding context from a single word

max P(enjoyed, the, we, watched | movie)

watched we the enjoyed

T
D

*

movie



® \We can also learn embeddings by predicting the surrounding context from a single word

max P(enjoyed, the, we, watched | movie)

watched we the enjoyed max P (Wt—Z’ Wt—l’ WH_]a Wt+2 ‘ Wt)

T
D

*

movie



® \We can also learn embeddings by predicting the surrounding context from a single word
max P(enjoyed, the, we, watched | movie)
watched we the enjoyed max P(Wt— 9y Wi_1,5 Wt+ s WZ‘+ ) ‘ Wt)

max log P(W,_p, W;,_1, W1, Wepo | W)

T
D

*

movie



Skip-gram

® \We can also learn embeddings by predicting the surrounding context from a single word

watched

we

T
D

*

movie

the

enjoyed

max P(enjoyed, the, we, watched | movie)
max P(W,_o, W_1, Wy s Wepo | W)

max log P(W,_», W,_1, W1, Wiin [ W)

max (log Pw,_,|w,) +log P(w,_;|w)

+log P(w,,{|w,) + log P(w,., | wt)>



Skip-gram

® \We can also learn embeddings by predicting the surrounding context from a single word

watched

we

T
D

*

movie

the

enjoyed

max P(enjoyed, the, we, watched | movie)
max P(W,_o, W_1, Wy s Wepo | W)

max log P(W,_», W,_1, W1, Wiin [ W)

max (log Pw,_,|w,) +log P(w,_;|w)

+log P(w,,{|w,) + log P(w,., | wt)>

P(w,|w,) = softmax(Uw,)



Skip-gram

® \We can also learn embeddings by predicting the surrounding context from a single word

watched we the enjoyed

P(w,|w,) = softmax(Uw,)

T

a0
; QD

movie




® \We can also learn embeddings by predicting the surrounding context from a single word

® Model is trained to minimise the
negative log probability of the

watched we the enjoyed :
¢ surrounding words

® Here, we use a window of N=2, but the
window size is a hyperparameter to set

t e Typically, set large window (N=10), but
QIID randomly select i € [1,N] as dynamic

*

movie

window size so that closer words
contribute more to learning



Skip-gram vs. CBOW

® Question: Do you expect a difference between what is learned by CBOW and Skipgram methods?

watched we the enjoyed

movie

T
D

*

movie

enjoyed the we watched



Demo

https://colab.research.google.com/drive/1aCWxocr8plpRtRj020DmdJyjKxf8g563h?usp=sharing



Other Resources of Interest

® GloVe Vectors (Pennington et al., 2014):
- Use the co-occurrence matrix between words to compute word vectors

- https://nlp.stanford.edu/projects/glove/

® Retrofitting word vectors to semantic lexicons (Faruqui et al., 2014)

- Training word vectors to encode semantic relationships from high-level
resources: WordNet, PPDB, and FrameNet


https://nlp.stanford.edu/projects/glove/

Part 2: Recurrent Neural

Networks for Sequence Modeling



Section Outline

® Background: Language Modeling, Feedforward Neural Networks,
Backpropagation

® Content - Models: Recurrent Neural Networks, LSTMs, Encoder-Decoders

® Content - Algorithms: Backpropagation through Time, Vanishing
Gradients



| anguage Modeling

® Given a subsequence, predict the next word: The cat chased the




Fixed Context Language Models

® Given a subsequence, predict the next word: The cat chased the

P(y) = softmax(b, + W, tanh(b, + W x))
maouse

Feedforward Neural Network

Concatenation

cat chased the



Fixed Context Language Models

® Given a subsequence, predict the next wora:

The starving cat fanatically chased the elusive

dream x

Feedforward Neural Network

Concatenation

The starving cat fanatically  chased the elusive



Problem

Fixed context windows limit language modelling capacity

How can we extend to arbitrary length sequences?




Recurrent Neural Networks

® Solution: Recurrent neural networks — NNs with feedback loops

Input

<y

At
State ht 00000

Pt €00




Unrolling the RNN

Unrolling the RNN across all time steps gives full computation graph

xt+ 1

t+1

Allows for learning from entire sequence history, regardless of length



Classical RNN: Elman Network

ht — G(thxt + Whhht—l + bh)

7, = G(Whht + bz)

<




Classical RNN: Elman Network

starving fanatically chased




Classical RNN: Elman Network

starving fanatically chased




Classical RNN: Elman Network

starving fanatically chased




Classical RNN: Elman Network

fanatically chased




Classical RNN: Elman Network

fanatically chased elusive




Classical RNN: Elman Network

fanatically chased elusive
cnm ann QD ann D
A5 X6 A7
h h
2 S5 h6

ht — G(thxt + Whhht—l + bh)

7, = G(Whht + bz)

$



Backpropagation Review: FFNs

. AQC me
Ny



Backpropagation Review: FFNs
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Backpropagation Review: FFNs

Z(,y) = ylog P(y) + (1 — y)log P(1 — y)
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Backpropagation Review: FFNs

Z(,y) = ylog P(y) + (1 — y)log P(1 — y)

o
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Backpropagation Review: FFNs

Z(,y) = ylog P(y) + (1 — y)log P(1 — y)

o

u=wXgp(.)+wy Xpp(.)+w;Xeps;(.)
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Backpropagation Review: FFNs
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Backpropagation Review: FFNs
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Backpropagation Review: FFNs
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Backpropagation Review: FFNs

Z(,y) = ylog P(y) + (1 — y)log P(1 — y)
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Backpropagation Review: FFNs
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Backprcpagatlon Review: FFNs
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Backpropagation Review: FFNs
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Backpropagation Review: FFNs
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Backpropagation Review: FFNs
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Backpropagation Review: FFNs
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Backpropagation through Time

Z, = G(Whht + bz)

<
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Backpropagation through Time

= G(thht + bz)

ht = 0(thxt + Whhht—l + bh)

v=W_h +0b, z, = o(v)

u = th.xt -+ Whhht—l -+ bh ht = G(I/l)

0z, do(v) dv  do(v)
— = — th
oh, o0v Oh, ov

oh, - do(u) du  0o(u)
ox, Oou ox,  Ou

W

X

0z, do(v) dv do(u) odu da(v)W do(u)

= W
oh, _ dow) du__ do(w) ., oh_, ov Oh ou Oh_, ov P ou M
hh

oh_, ou oh_,  Ou



Vanishing Gradients

® Learning Problem: Long unrolled networks will crush gradients that
backpropagate to earlier time steps



Vanishing Gradients

® Learning Problem: Long unrolled networks will crush gradients that
backpropagate to earlier time steps

u = th.xt + Whhht—l + bh



Vanishing Gradients

® Learning Problem: Long unrolled networks will crush gradients that
backpropagate to earlier time steps

h, —.G(thxt + thzlft_ 1, + bh) oh, do(u) Ju W ‘do(u).
— — h l—'

h.
U = thxt + Whhht—l + bh aht_l al/t aht_l . - .az/t. -:




Vanishing Gradients

® Learning Problem: Long unrolled networks will crush gradients that
backpropagate to earlier time steps

by =i0{ WX, + Wyih,_ i+ by) o, _dow) ou_
— — "

h .
U = th.xt + Whhht—l + bh aht_l al/t aht_l . .az/t. -:




Vanishing Gradients

® \While this is a problem in many neural networks, it is especially
pronounced in Elman networks (RNNs) due to the sigmoid activation



L ong Short Term Memory (LSTM)

Gates:

fi = o(Wex, + Wyh,_y + by)
I, = G(VVixxt + Wyh,_ + bi)

0, = o(Wyx,+ W,,h,_,+Db,)

Et — ¢(chxt + Wchht—l T bc)
c,=1I1,XC,+ [ Xc,_,

h,= o0, X ¢(c,)




Cell State

—
6.Jt — ¢(chxt + Wchht—l + bc)

c, =1, XC+[fXc,_




Forget Gate

Gates:

—
51‘ — ¢(chxt + Wchht—l + bc)

c,=1I1XC +fXc_,



Input Gate

Gates:

—
51‘ — ¢(chxt + Wchht—l + bc)

c,=1I1XC +fXc_,



Output Gate

Gates:

51‘ — ¢(chxt + Wchht—l + bc)

c, =1, XC+[fXc,_,

h,= 0, X ¢(c)



L ong Short Term Memory (LSTM)

Gates:

fi = o(Wex, + Wyh,_y + by)
I, = G(VVixxt + Wyh,_ + bi)

0, = o(Wyx,+ W,,h,_,+Db,)

Et — ¢(chxt + Wchht—l T bc)
c,=1I1,XC,+ [ Xc,_;

h,= o0, X ¢(c,)




Vanishing Gradients?

Recurrent Neural Networks Long Short Term Memory
State maintained by hidden state feedback State maintained by cell value
ht = G(th.xt + Whhht—l + bh) C;, = it X El‘ +]Ct X Ci1q
Gradient systemically squashed by sigmoid Gradient set by value of forget gate
oc,
= f
N 0c;_

— : : S Can still vanish, but only if forget gate closes!



Fncoder-Decoder Models

® Encode a sequence fully with one model and use its representation to
seed a second model that decodes another sequence

A\

V1
?

t t

Yo Y3
@ @
t t
Encoder Encoder Encoder Encoder Decoder Decoder Decoder Decoder
LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM
t t
Y1 Y2

?

Yo 93



Fncoder-Decoder Models

| am Antoine <END>
® c.g., machine translation

A\

Y4
?

?

Yo Y3
@ @
t t
Encoder Encoder Encoder Encoder Decoder Decoder Decoder Decoder
LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM
t t
V1

?
Yo Y3

Je m’ appelle  Antoine <START> I am Antoine



Fncoder-Decoder Models

® [nput doesn’t need to be text Monkey on bike = <END>

® c.g., image captioning

Decoder
LSTM

Decoder
LSTM

Decoder
LSTM

Decoder
LSTM

Image
Encoder

Photo credit: J Hovenstine Studios ? ? ? ?

Yo Vi Y2 Y3
<START> Monkey on bike



Bidirectionality

® Decoder needs to be unidirectional (can’t know the future...)

® Encoder sequence representation augmented by encoding in both directions

Encoder
LSTM

Encoder
LSTM

Encoder

hbwd Encoder
{ LSTM

LSTM

Encoder

Encoder Encoder Encoder hfwd
LSTM

LSTM LSTM LSTM



Bidirectionality

® Decoder needs to be unidirectional (can't know the future...)

® Encoder sequence representation augmented by encoding in both directions

bwd Encoder Encoder Encoder Encoder fwd. 1. bwd Decoder
hy istM [T | LsT™ LSTM LSTM LAY g TS

Encoder Encoder Encoder Encoder hfwd
LSTM LSTM LSTM LSTM t




Other Resources of Interest

® (Gated Recurrent Units (Cho et al., 2014):

- Different approach for maintaining state and avoiding vanishing
gradients

® | STM: A Search Space Odyssey (Greft et al., 2015)

- Examine 5000 different modifications to LSTMs — none significantly
better than original architecture

® Only basics presented here today! Many offshoots of these techniques!



Part 3: Attentive Neural
Modeling with Transtormers



Section Outline

® Background: Long-term Dependency Modeling

® Content: Attention, Selt-Attention, Multi-headed Attention, Transtormer
Blocks, Transtormers

® Demo: Visualizing Transformer Attention



Issue with Recurrent Models

® Multiple steps of state overwriting makes it challenging to learn long-
range dependencies.

They tuned, discussed for a moment, then struck up a lively
jig. Everyone joined in, turning the courtyard into an even
more chaotic scene, people now dancing in circles, swinging
and spinning in circles, everyone making up their own dance
steps. | felt my feet tapping, my body wanting to move.
Aside from writing, | 've always loved dancing .

® Nearby words should affect each other more than farther ones, but RNNs
make it challenging to learn any long-range interactions

LAMBADA dataset, 2016



Attentive Encoder-Decoder Models

. ® |dea: Use the output of

the Decoder LSTM to

@ compute an attention

N over all the outputs of
Attention the encoder LSTM

Decoder ® Attention is a weighted
LSTM average over a set

?

m ® Question: what setting

t might this be useful in?
Y0

Encoder Encoder Encoder Encoder
LSTM LSTM LSTM LSTM




Review: LSTMs

Et — ¢(chxt + Wchht—l T bc)
c,=1,XC+[fXc,_,

h, = 0, X ¢p(c;)



Attention Function

® Set output of decoder as weighted sum of encoder outputs

® Compute similarity between decoder hidden state and encoder output states

hte = encoder output hidden states htd = decoder output hidden states

hy

Encoder Encoder Encoder Encoder Decoder
LSTM LSTM LSTM LSTM LSTM




Attention Function

® Compute similarity between decoder hidden state and encoder output
states

hf = encoder output hidden states htd = decoder output hidden state

® Compute pairwise score between each encoder hidden state and decoder

-<(g4) ~/(BY) ~-(8Y

hy m &




Attention Formulas

Attention Function Formula

Bilinear a = h*Wh¢

Concatenation a = VT¢(W[he; hd])

Dot Product a = h¢-h¢

(Whe)!(UR?)
Scaled Dot Product d = T



Attention Function

® Compute pairwise score between each encoder hidden state and decoder

hidden state

~(80) A

hy

g) /(8

h

i

® Convert scores to distribution over encoder hidden states and computea

I
1.d _ e
=1

m

weighted average:

Softmax!



Attentive Encoder-Decoder Models

Y1
XD

0000 N O0OOOO R OOOOGONOG0OEOOGS Attention

Encoder Encoder Encoder Encoder
LSTM LSTM LSTM LSTM

Pass the output of the

Decoder attention \ayer hcli
LSTM
to your output layer,

] which predicts the most

Q1D
?

likely output token ¥

Yo



Attentive Encoder-Decoder Models
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Attentive Encoder-Decoder Models

Encoder Encoder Encoder Encoder
LSTM LSTM LSTM LSTM




Attention Recap

® Compute new output of decoder as weighted sum ot encoder outputs

® Compute pairwise score between each encoder hidden state and decoder
hidden state

]’lf = encoder output hidden states htd = decoder output hidden state

® Many possible functions for computing scores (dot product, bilinear, etc.)

® Allows for direct connection between decoder and ALL encoder states




Issue with Recurrent Models

® Recurrent functions can’t be parallelized because previous state needs to
be computed to encode next one

Encoder Encoder Encoder Encoder
LSTM LSTM I LSTM I LSTM




Self-Attention

® Ditch recurrence and compute encoder state representations in parallel!

® Compute pairwise score between each encoder hidden state and the
other encoder hidden states

htf = encoder hidden state at time step t at layer £

D AIID CoooO QXXD
t t t t

hy h) hy hy



Self-Attention

® Compute pairwise score between each encoder hidden state and the
other encoder hidden states

z,”

= encoder hidden state at time step t at layer £

/(gH) » /@8

h h3 h! h?

ONT A a, “,...¢t.. T}
(th) (Uht ) i ;’lf . ZT: o Vhf includes s!
— !

St — a.. )
N A

Self-attention!



Self-Attention

® Essentially, re-compute representation of state at every time step t using a
weighted average of the representations of the other time steps

7,1
(W) (Uhf) & =Y Vi
- _— s St [
\Y \/3 =
LY Self

Attention

t t t t



Self-Attention

® Used same notation as before for consistency, but actual notation for selt-
attention in transtormers use query (Q), keys (K), values (V):

(W20)(WKK) hy i = WoaVWY
d = ———————
Vd 0 = h{
Self
o = softmax(a) Attention

&oc[oo) ecooe

t t t t
hy h) hy hy




Multi-Headed Selt-Attention

Project V, K, Q into H sub-vectors where H is the

number of “heads”

K
_ (WIOWEK)
L -Concat
\Vd/H
Compute attention weights separately for each Soalod Dot-Product
sub-vector Attention 4 n

B o v *
a; = softmax(a,) h: = aVW,

\/ \/ \J

Concatenate sub-vectors for each head

~J

' =WOLhS;, ...;h%; .. ke ] V K Q

Vaswani et al., 2017



Transtformer Block

Selt-attention is the main innovation of the Add & NOrm
popular transformer model!

Each transformer block receives as input the

outputs of the previous layer at every time step

Each block is composed of a multi-headed
attention, a layer normalisation, a feedforward

network, and another layer normalisation Add & NOrm

There are residual connections before every Multi-Head
normalisation layer Attention

Layer normalisation + residual connections
don’t add capacity, but make training easier

Vaswani et al., 2017



Full Transformer

® Full transformer encoder is multiple cascaded
transtformer blocks

- build up compositional representations of inputs
® No need to propagate state forward in time

- states at each time step computed in parallel!
® Transformer decoder (right) similar to encoder

- second attention layer to compute weighted
average of encoder states before FFN

(

Output
Probabilities

1

[ Softmax |

i

| Linear |
A

Feed
Forward
y

| Add & Norm |}~

Multi-Head
Attention

- - N
| Add & Norm <~

_L)r_) )
| Add & Norm |<-\

Masked
Multi-Head
Attention

A_t

J

N x

4 l ™
~>{ Add & Norm }
Feed
Forward
L 4
N> | (Add & Norm
Multi-Head
Attention
A4 2
\_

\_ )
Positional 4
Encoding

Input
Embedding
Inputs

.

Y,

s

Output
Embedding

T

Outputs

(shifted right)

Positional
Encoding

Vaswani et al., 2017



Full Transformer

® Full transformer encoder is multiple cascaded
transtformer blocks

- build up compositional representations of inputs
® No need to propagate state forward in time

- states at each time step computed in parallel!
® Transformer decoder (right) similar to encoder

- second attention layer to compute weighted
average of encoder states before FFN

Output
Probabilities

1

[ Softmax |

i

| Linear |
A

% - N
| Add & Norm <~

|
Feed
Forward
y

( ) 4
r | N | Add & Norm |}~
> Add & Norm J Multi-Head
Feed Attention
F d t ) )
orwar _ N x
L 4 /
| Add & Norm |<-\
N Add & Norm 1
1 Masked
Multi-Head Multi-Head
Attention Attention
A 4 12 A+ 1

Positional Positional
Encoding Encoding

Input Output

Embedding Embedding

T T

Inputs Outputs
(shifted right)

Vaswani et al., 2017



Full Transformer

Output
Probabilities

| Softmax l

Recurrent models provided word order information

Does self-attention provide word order information?

— Masked
Multi-Head Multi-Head
. . . Attention Attention
® Transformer decoder (right) similar to encoder 1 7 -
Positional Positional
- second attention layer to compute weightea Encoding Encoding
Input Output
average of encoder states before FFN Embedding Embedding

T T

Inputs Outputs
(shifted right)

Vaswani et al., 2017



Position Embeddings

® Self-attention provides no word order

information Positional
Encoding

" »‘ Positional
“' & ‘v Encoding
Input Output
Embedding Embedding

Inputs Qutputs
(shifted right)

- Computes weighted average over set of

vectors

® \Word order is pretty crucial to
understanding language

- How do we fix this?

® Add an additional embedding to the input
word that represents a position in the
seguence

Vaswani et al., 2017



Position Embeddings

® Self-attention provides no word order

information Positional
Encoding

" »‘ Positional
" & ‘v Encoding
Input Output
Embedding Embedding

Inputs Qutputs
(shifted right)

- Computes weighted average over set of

vectors

® \Word order is pretty crucial to

understanding language
® Early position embeddings encoded a

- How do we fix this? sinusoid function that was oftset by a phase
shift proportional to sequence position
® Add an additional embedding to the input

word that represents a position in the ® In practice, everyone nowadays learns
sequence position embeddings from scratch

Vaswani et al., 2017



Other Resources of Interest

® The Annotated Transformer

- https://nlp.seas.harvard.edu/2018/04/03/attention.html

® The lllustrated Transformer
- https://jalammar.github.io/illustrated-transformer/

® Only basics presented here today! Many modifications to initial
transformers exist



Demo: Attention Visualization

https://colab.research.google.com/drive/1PEHWRHrvxQvYrONFRC-E_fr3xDqg1htCj



Part 4: Modern NLP
Where do we go from here?




Section Outline

® Advances: NLP Successes, Pretraining, Scale
® New Problems: Robustness, Multimodality, Knowledge, Prompting, Ethics

® Demo: Write with Transformers!



Deep Learning Successes in NLP
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Pretraining

Massive Text Corpus

— . - . - . o~ P

Critics say that current voting systems used in the United States are inefficient and often
lead to the inaccurate counting of votes. Miscounts can be especially damaging if an election 1s
closely contested. Those critics would like the traditional systems to be replaced with far more
efficient and trustworthy computerized voting systems.

In traditional voting, one major source of inaccuracy 1s that people accidentally vote for
the wrong candidate. Voters usually have to find the name of their candidate on a large sheet of
paper containing many names—the ballot—and make a small mark next to that name. People
with poor eyesight can easily mark the wrong name. The computerized voting machines have an
easy-to-use touch-screen technology: to cast a vote, a voter needs only to touch the candidate’s
name on the screen to record a vote for that candidate; voters can even have the computer
magnify the name for easier viewing.

Another major problem with old voting systems is that they rely heavily on people to
count the votes. Officials must often count up the votes one by one, going through every ballot
and recording the vote. Since they have to deal with thousands of ballots, it is almost inevitable
that they will make mistakes. If an error 1s detected, a long and expensive recount has to take
place. In contrast, computerized systems remove the possibility of human error, since all the vote
counting 1s done quickly and automatically by the computers.

Finally some people say it 1s too risky to implement complicated voting technology
nationwide. But without giving it a thought, governments and individuals alike trust other
complex computer technology every day to be perfectly accurate in banking transactions as well
as in the communication of highly sensitive information.

Used to

|l earn

Transtormer Language Model
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(Radford et al., 2018, 2019, many others)



Pretraining: Two Approaches

(Causal, Left-to-right)
Language Modeling

| really enjoyed the movie we
watched on

©®

OpenAl

(Radford et al., 2018, 2019, many others)

Masked
Language Modeling

| really enjoyed the we

watched on Saturday!

=

(Devlin et al., 2018; Liu et al., 2020)




# Parameters in Model

Scale
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(July 2020)
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Results

Rank Name Model URL Score BoolQ CB COPA MultiRC ReCoRD RTE WIiC WSC AX-b AX-g

1 Liam Fedus SS-MoE 91.0 923 96.9/98.0 99.2 89.2/65.2 95.0/94.2 935 774 966 723 96.1/94.1

2 Microsoft Alexander v-team  Turing NLR v5 90.9 920 95.9/97.6 98.2 88.4/63.0 96.4/959 941 771 973 67.8 93.3/95.5

3 ERNIE Team - Baidu ERNIE 3.0 C})' 90.6 91.0 98.6/99.2 97.4 88.6/63.2 94.7/942 926 774 973 68.6 92.7/94.7

+ 4 Zirui Wang T5 + UDG, Single Model (Google Brain) C})' 90.4 914 958/97.6 98.0 88.3/63.0 94.2/93.5 930 779 96.6 69.1 92.7/91.9
+ 5 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4 C})' 90.3 90.4 95.7/97.6 98.4 88.2/63.7 94.5/941 932 775 959 66.7 93.3/93.8
6 SuperGLUE Human Baselines SuperGLUE Human Baselines C};' 89.8 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0 76.6 99.3/99.7

7 T5 Team - Google 15 C})' 89.3 912 93.9/96.8 948 88.1/63.3 94.1/93.4 925 769 938 656 92.7/91.9

Superhuman results on benchmark datasets!

All top models use transformers!




Robustness

Deep learning models exploit biases , annotation
artifacts , surface patterns etc.

They struggle to learn robust understanding abilities

JUDEA PEARL
WINNER OF THE TURING AWA

AND DANA MACKENZIE

THE
BOOK OF

WHY "All the impressive achievements of deep

learning amount to just curve fitting”

EEEEEEEEEEEEE

(Pearl, 2018)



_“% Discussing the limits of
l »m artificial intelligence

Remaining Problems!
€he New Hork Eime

We Teach A.I. Systems
Everything, Including Our Biases

WIGE E] If Computers Are So Smart
The

Economist

Open Future

Don’t trust Al until we build
systems that earn trust

MIT
Technology
Review

Artificial Intelligence / Machine Learning

We can’t trust Al syste
built on deep learning
alone

€he New ork Eimes
How to Build Artificial
[ntelligence We Can Trust

Computer systems need to understand time, «
causalitv. Richt now thev don't.




Multimodality

CLlP OpenAI Da” E OpenAI

Using natural language training Learning to generate images from
to Improve computer vision natural language descriptions

rext proMpT  anillustration of a baby daikon radish in a tutu walking a dog
peppier the Text
aussie pup Encodet AI-GENERATED
IMAGES » ’ -4
/ T "
T T T T o e
1 2 3 N
/) e
'.H 7- o.‘: -/ “
o I’ IT ‘T, I' 'T2 I, ‘T3 I, 'TN Edit prompt or view more images-
— I I, T, IpT, I,T; I Ty
TEXT PROMPT  an armchair in the shape of an avocado.. ..
i Image
| o > I3 I3y I3T, IzT; Is-Tn
AI-GENERATED

IMAGES
— I IyTy IyT, IgTz o IyTy . ’

Edit prompt or view m

https://openai.com/blog/clip/ https://openai.com/blog/dall-e/



Structured Knowledge Integration
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nstructured Knowledge Integration

Define

"middle ear"™ (x)

The middle ear includes
the tympanic cavity and

W - e e e e e e e
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by Emma Raducanu. She
defeated Leylah
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final. She is the first British
woman...

Borgeaud et al., 2021



Prompting: A new learning paradigm!

Prompts in Red. GPT3 responses in Blue

® At very large-scale, language

Q. How do you draw a bicycle with shapes?

A. You draw a bicycle with two circles connected by a line. mode\s exhibit emergent "n_

o You drn o bl aith e T context learning abilities

Q. How do you draw a house with shapes?

A. You draw a house with a trapezium on top of a square. o Providing examp‘es 3S iﬂpUt that
Yo e o s s s B depict desired behaviour is

Q. How do you draw a clock with shapes? eﬂOugh fOr mOde‘ tO rep‘lCate |t

A. You draw a clock with two circles connected by a line.

Q. How do you draw a chair with shapes? ®

No learning required, though

A. You draw a chair with a square on top of a diamond.

Q. How do you draw a telephone with shapes? ‘ea rﬂlﬂg Can |mprOve th|S ablhty

A. You draw a telephone with two ovals connected by a line.



Saftety & Ethics

(Warning: examples contain sensitive content)

Prompt Generated text
The man worked as a car salesman at the local
Wal-Mart
The woman worked as| a prostitute under the name of
Hariya

The Black man a pimp for 15 years.
worked as

The White man a police officer, a judge, a
worked as prosecutor, a prosecutor, and the

president of the United States.

The gay person was

| his love of dancing, but he also did

known for drugs
The straight person | his ability to find his own voice and
was known for to speak clearly.

Sheng et al., 2020

Learned behaviors of large-scale NLP
models are incredibly opaque

Language models learn harmful patterns of bias
from large language corpora

NLP models can reflect and produce
toxic and stereotype-laden content
from seemingly innocuous inputs

Models can be exploited in open-world
contexts by malicious actors

How should NLP models be
democratised?



Demo

https://transformer.huggingface.co/doc/gpt2-large



NLP @ EPFL is growing!

® New Natural Language Processing Lab
- Master’s Theses, Semester Projects available every term
® New NLP courses

- Starting Spring 2022: Topics in Natural Language Processing (2 credits)

>~ Paper reading, paper reviewing, discussion

- Starting Spring 2023: Modern Natural Language Processing (6 credits)

» Lectures, Assignments, Project



