Deep Learning for Natural Language Processing

Antoine Bosselut

Machine Translation

Conversational Systems

Propel Al forward. Push yourself further.

Question Answering

Lecture Outline

- Introduction
- Section 1 - Neural Embeddings
- Section 2 - Recurrent Neural Networks for Sequence Modeling
- Section 3 - Attentive Neural Modeling with Transformers
- Section 4 - Modern NLP: What comes next?

Part 1: Neural Embeddings

Section Outline

- Review: sparse word vector representations
- New: Dense word vector representations - CBOW \& Skipgram
- Demo: Similar words for different embedding learning algorithms

Word Representations

- How do we represent natural language sequences for NLP problems?

I really enjoyed the movie we watched on Saturday!

Sparse Word Representations

- Define a vocabulary V

$$
w_{i} \in\{0,1\}^{V}
$$

- Each word in the vocabulary is represented by a sparse vector
- Dimensionality of sparse vector is size of vocabulary (e.g., thousands, possibly millions)

1	[$0 . . .00001 \ldots 000]$
really	[$0 \ldots 1 \ldots 0000000]$
enjoyed	[$0 \ldots \ldots 000010 \ldots 00]$
the	$\left[\begin{array}{llllllllll}0 & . . & 0 & 1 & 0 & 0 & 0\end{array}\right.$
movie	[$0 \ldots 0000000 \ldots 1$]
$!$	[1 ... 00000000000$]$

Word Vector Composition

- To represent sequences, beyond words, define a composition function over sparse vectors

$$
\begin{aligned}
& \text { I really enjoyed the movie ! } \left.\longrightarrow \begin{array}{llllllll}
1 & \ldots & 1 & 1 & 0 & 1 & \ldots & 0
\end{array}\right] \begin{array}{l}
\text { Simple } \\
\text { Counts }
\end{array} \\
& \text { I really enjoyed the movie! } \longrightarrow\left[\begin{array}{llllll}
0.01 \ldots 0.1 & 0.1 & 0 & 0.001 \ldots & 0.5
\end{array}\right] \\
& \text { Weighted by } \\
& \text { Corpus Statistics }
\end{aligned}
$$

Many others...

Problem

Similarity is only a function of common words!
How do you learn learn similarity between words?

$$
\begin{aligned}
& \text { loved } \longrightarrow \quad\left[\begin{array}{llllllll}
0 & \ldots & 1 \ldots & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \operatorname{sim}(\text { enjoyed, loved })=0
\end{aligned}
$$

Embeddings Goal

How do we train semantics-encoding embeddings of words?

"You shall know a word by the company it keeps"

-J.R. Firth, 1957

Context Representations

Solution:

Rely on the context in which words occur to learn their meaning

Context is the set of words that occur nearby

I really enjoyed the ___ we watched on Saturday!
The ___ growled at me, making me run away.
I need to go to the ___ to pick up some dinner.

Context Representations

Solution:

Rely on the context in which words occur to learn their meaning

Context is the set of words that occur nearby

I really enjoyed the ___ we watched on Saturday!
The ___ growled at me, making me run away.
I need to go to the ___ to pick up some dinner.
Foundation of distributional semantics

Dense Word Vectors

- Represent each word as a high-dimensional*, real-valued vector
- *Low-dimensional compared to V-dimension sparse representations, but still usually $\mathrm{O}\left(10^{2}-10^{3}\right)$

- Similarity of vectors represents similarity of meaning for particular words

Learning Word Embeddings

- Many options, but three common approaches
- Word2vec - Continuous Bag of Words (CBOW)
- Learn to predict missing word from surrounding window of words
- Word2vec - Skip-gram
- Learn to predict surrounding window of words from given word
- GloVe
- Not covered today

Continuous Bag of Words (CBOW)

- Predict the missing word from a window of surrounding words

Continuous Bag of Words (CBOW)

- Predict the missing word from a window of surrounding words

$$
\max P(\text { movie } \mid \text { enjoyed, the, we, watched })
$$

$$
\begin{gathered}
\max P\left(w_{t} \mid w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}\right) \\
\max P\left(w_{t} \mid\left\{w_{x}\right\}_{x=t-2}^{x=t+2}\right)
\end{gathered}
$$

$$
P\left(w_{t} \mid\left\{w_{x}\right\}_{x=t-2}^{x=t+2}\right)=\operatorname{softmax}\left(\mathbf{U} \sum_{\substack{x=t-2 \\ x \neq t}}^{t+2} \mathbf{w}_{x}\right)
$$

Continuous Bag of Words (CBOW)

- Predict the missing word from a window of surrounding words
movie

$$
P\left(w_{t} \mid\left\{w_{x}\right\}_{x=t-2}^{x=t+2}\right)=\operatorname{softmax}\left(\mathbf{U} \sum_{\substack{x=t-2 \\ x \neq t}}^{t+2} \mathbf{w}_{x}\right)
$$

$\mathbf{w}_{x} \in \mathbb{R}^{1 \times d}$
-•••
$\mathbf{U} \in \mathbb{R}^{d \times V}$

Projection

$$
\operatorname{softmax}(\mathbf{a})_{i}=\frac{e^{a_{i}}}{\sum_{j=1}^{|\mathbf{a}|} e^{a_{j}}}
$$

Softmax Function

- The softmax function generates a probability distribution from the elements of the vector it is given

Continuous Bag of Words (CBOW)

movie

- Model is trained to maximise the probability of the missing word
- For computation reasons, the model is typically trained to minimise the negative log probability of the missing word
- Here, we use a window of $\mathbf{N}=\mathbf{2}$, but the window size is a hyperparameter
- For computational reasons, a hierarchical softmax used to compute distribution

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word $\max P($ enjoyed, the , we, watched \mid movie $)$

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word

movie

$$
P\left(w_{x} \mid w_{t}\right)=\operatorname{softmax}\left(\mathbf{U} \mathbf{w}_{t}\right)
$$

$$
\mathbf{w}_{t} \in \mathbb{R}^{1 \times d}
$$

$$
\begin{aligned}
& \text {-0•• } \\
& \text {-0••• }
\end{aligned}
$$

$\mathbf{U} \in \mathbb{R}^{d \times V}$

Projection

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word

- Model is trained to minimise the negative log probability of the surrounding words
- Here, we use a window of $\mathbf{N}=\mathbf{2}$, but the window size is a hyperparameter to set
- Typically, set large window ($\mathbf{N}=\mathbf{1 0}$), but randomly select $i \in[1, N]$ as dynamic window size so that closer words contribute more to learning

Skip-gram vs. CBOW

- Question: Do you expect a difference between what is learned by CBOW and Skipgram methods?

Demo

https://colab.research.google.com/drive/1aCWxocr8plpRtRj02ODmJyjKxf8g563h?usp=sharing

Other Resources of Interest

- GloVe Vectors (Pennington et al., 2014):
- Use the co-occurrence matrix between words to compute word vectors
- https://nlp.stanford.edu/projects/glove/
- Retrofitting word vectors to semantic lexicons (Faruqui et al., 2014)
- Training word vectors to encode semantic relationships from high-level resources: WordNet, PPDB, and FrameNet

Part 2: Recurrent Neural

Networks for Sequence Modeling

Section Outline

- Background: Language Modeling, Feedforward Neural Networks, Backpropagation
- Content - Models: Recurrent Neural Networks, LSTMs, Encoder-Decoders
- Content - Algorithms: Backpropagation through Time, Vanishing Gradients

Language Modeling

- Given a subsequence, predict the next word: The cat chased the \qquad

Fixed Context Language Models

- Given a subsequence, predict the next word: The cat chased the \qquad

$$
P(y)=\operatorname{softmax}\left(b_{o}+\mathbf{W}_{o} \tanh \left(b_{h}+\mathbf{W}_{h} x\right)\right)
$$

mouse

Fixed Context Language Models

- Given a subsequence, predict the next word:

The starving cat fanatically chased the elusive

Problem

Fixed context windows limit language modelling capacity
How can we extend to arbitrary length sequences?

Recurrent Neural Networks

- Solution: Recurrent neural networks - NNs with feedback loops

Unrolling the RNN

Unrolling the RNN across all time steps gives full computation graph

Allows for learning from entire sequence history, regardless of length

Classical RNN: Elman Network

00000
0000

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$

Classical RNN: Elman Network

Backpropagation Review: FFNs

Backpropagation Review: FFNs

$$
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y})
$$

Backpropagation Review: FFNs

$$
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y})
$$

$$
\hat{y}=\phi_{o}(u)
$$

Backpropagation Review: FFNs

$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.)
\end{gathered}
$$

Backpropagation Review: FFNs

$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.) \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)}
\end{gathered}
$$

Backpropagation Review: FFNs

$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.) \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0}
\end{gathered}
$$

Backpropagation Review: FFNs

$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.) \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0}
\end{gathered}
$$

Backpropagation Review: FFNs

$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.) \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0} \\
\text { Depends on label } y
\end{gathered}
$$

Backpropagation Review: FFNs

$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.) \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0} \\
\text { Depends on label } y
\end{gathered}
$$

Backpropagation Review: FFNs

$$
\begin{aligned}
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)} & =\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
& =\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0}
\end{aligned}
$$

Backpropagation Review: FFNs

Backpropagation Review: FFNs

$$
\phi_{31}^{\left(\phi_{21}\right)}
$$

Backpropagation Review: FFNs

Backpropagation Review: FFNs

$$
\text { (} \phi_{21}
$$

Backpropagation Review: FFNs

Backpropagation through Time

$$
z_{t}=\sigma\left(W_{z h} h_{t}+b_{z}\right)
$$

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$

$$
\begin{array}{ll}
v=W_{z h} h_{t}+b_{z} & z_{t}=\sigma(v) \\
u=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} & h_{t}=\sigma(u)
\end{array}
$$

$$
\frac{\partial z_{t}}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} \frac{\partial v}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} W_{z h}
$$

$$
\frac{\partial h_{t}}{\partial x_{t}}=\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial x_{t}}=\frac{\partial \sigma(u)}{\partial u} W_{h x}
$$

00000
00000

$$
\frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} W_{h h}
$$

Backpropagation through Time

$$
z_{t}=\sigma\left(W_{z h} h_{t}+b_{z}\right)
$$

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$

$$
\begin{array}{ll}
v=W_{z h} h_{t}+b_{z} & z_{t}=\sigma(v) \\
u=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} & h_{t}=\sigma(u)
\end{array}
$$

$$
\begin{aligned}
\frac{\partial z_{t}}{\partial h_{t}} & =\frac{\partial \sigma(v)}{\partial v} \frac{\partial v}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} W_{z h} \\
\frac{\partial h_{t}}{\partial x_{t}} & =\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial x_{t}}=\frac{\partial \sigma(u)}{\partial u} W_{h x} \\
\frac{\partial h_{t}}{\partial h_{t-1}} & =\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} W_{h h}
\end{aligned}
$$

00000

$$
\frac{\partial z_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(v)}{\partial v} \frac{\partial v}{\partial h_{t}} \frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=\frac{\partial \sigma(v)}{\partial v} W_{z h} \frac{\partial \sigma(u)}{\partial u} W_{h h}
$$

∞

Vanishing Gradients

- Learning Problem: Long unrolled networks will crush gradients that backpropagate to earlier time steps

$$
h_{t}=: \sigma\left(W_{h x} x_{t}+W_{h h}^{\prime} h_{t-1}^{\prime}+b_{h}\right)
$$

Vanishing Gradients

- Learning Problem: Long unrolled networks will crush gradients that backpropagate to earlier time steps

$$
\begin{gathered}
h_{t}=\stackrel{r}{\square}\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right) \\
u=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}
\end{gathered}
$$

Vanishing Gradients

- Learning Problem: Long unrolled networks will crush gradients that backpropagate to earlier time steps

$$
\begin{gathered}
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right) \quad \frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=W_{h h_{1}}^{\partial u}=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} \quad \partial \sigma(u)
\end{gathered}
$$

Vanishing Gradients

- Learning Problem: Long unrolled networks will crush gradients that backpropagate to earlier time steps

$$
\begin{gathered}
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right) \quad \frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=W_{h h_{1}}^{\partial u}=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} \quad \partial \sigma(u)
\end{gathered}
$$

Vanishing Gradients

- While this is a problem in many neural networks, it is especially pronounced in Elman networks (RNNs) due to the sigmoid activation

Long Short Term Memory (LSTM)

Gates:

Cell State

Forget Gate

Gates:

$$
\begin{aligned}
& \underbrace{f_{t}=\sigma\left(W_{f x} x_{t}+W_{f h} h_{t-1}+b_{f}\right)} \\
& \rightarrow \\
& \tilde{c}_{t}=\phi\left(W_{c x} x_{t}+W_{c h} h_{t-1}+b_{c}\right) \\
& c_{t}=i_{t} \times \tilde{c}_{t}+f_{t} \times c_{t-1}
\end{aligned}
$$

Input Gate

Gates:

Output Gate

Gates:

Long Short Term Memory (LSTM)

Gates:

Vanishing Gradients?

Recurrent Neural Networks

State maintained by hidden state feedback

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$

Gradient systemically squashed by sigmoid

Long Short Term Memory

State maintained by cell value

$$
c_{t}=i_{t} \times \tilde{c}_{t}+f_{t} \times c_{t-1}
$$

Gradient set by value of forget gate

$$
\frac{\partial c_{t}}{\partial c_{t-1}}=f_{t}
$$

Can still vanish, but only if forget gate closes!

Encoder-Decoder Models

- Encode a sequence fully with one model and use its representation to seed a second model that decodes another sequence

Encoder-Decoder Models

Encoder-Decoder Models

- Input doesn't need to be text

Monkey
on
bike
<END>

- e.g., image captioning

Photo credit: J Hovenstine Studios

Bidirectionality

- Decoder needs to be unidirectional (can't know the future...)
- Encoder sequence representation augmented by encoding in both directions

Bidirectionality

- Decoder needs to be unidirectional (can't know the future...)
- Encoder sequence representation augmented by encoding in both directions

Other Resources of Interest

- Gated Recurrent Units (Cho et al., 2014):
- Different approach for maintaining state and avoiding vanishing gradients
- LSTM: A Search Space Odyssey (Greff et al., 2015)
- Examine 5000 different modifications to LSTMs - none significantly better than original architecture
- Only basics presented here today! Many offshoots of these techniques!

Part 3: Attentive Neural

 Modeling with Transformers
Section Outline

- Background: Long-term Dependency Modeling
- Content: Attention, Self-Attention, Multi-headed Attention, Transformer Blocks, Transformers
- Demo: Visualizing Transformer Attention

Issue with Recurrent Models

- Multiple steps of state overwriting makes it challenging to learn longrange dependencies.

They tuned, discussed for a moment, then struck up a lively jig. Everyone joined in, turning the courtyard into an even more chaotic scene, people now dancing in circles, swinging and spinning in circles, everyone making up their own dance steps. I felt my feet tapping, my body wanting to move. Aside from writing, I've always loved dancing .

- Nearby words should affect each other more than farther ones, but RNNs make it challenging to learn any long-range interactions

Attentive Encoder-Decoder Models

- Idea: Use the output of the Decoder LSTM to compute an attention over all the outputs of the encoder LSTM
- Attention is a weighted average over a set
- Question: what setting might this be useful in?

Review: LSTMs

Attention Function

- Set output of decoder as weighted sum of encoder outputs
- Compute similarity between decoder hidden state and encoder output states

$$
h_{t}^{e}=\text { encoder output hidden states } \quad h_{t}^{d}=\text { decoder output hidden states }
$$

Attention Function

- Compute similarity between decoder hidden state and encoder output states

$$
h_{t}^{e}=\text { encoder output hidden states } \quad h_{t}^{d}=\text { decoder output hidden state }
$$

- Compute pairwise score between each encoder hidden state and decoder hidden state

Attention Formulas

Attention Function

Formula

Bilinear

Concatenation

Dot Product

Scaled Dot Product

$$
\begin{gathered}
a=h^{e} \mathbf{W} h^{d} \\
a=v^{T} \phi\left(\mathbf{W}\left[h^{e} ; h^{d}\right]\right) \\
a=h^{e} \cdot h^{d}
\end{gathered}
$$

$$
a=\frac{\left(\mathbf{W} h^{e}\right)^{T}\left(\mathbf{U} h^{d}\right)}{\sqrt{d}}
$$

Attention Function

- Compute pairwise score between each encoder hidden state and decoder hidden state

$$
\begin{aligned}
& h_{1}^{e} \quad h_{1}^{d} \\
& h_{2}^{e} \quad h_{1}^{d} \\
& h_{3}^{e} \quad h_{1}^{d}
\end{aligned}
$$

- Convert scores to distribution over encoder hidden states and computed weighted average:

$$
\text { Softmax! } \quad \alpha_{t}=\frac{e^{a_{t}}}{\sum_{j} e^{a_{j}}} \quad \quad \tilde{h}_{1}^{d}=\sum_{t=1}^{T} \alpha_{t} h_{t}^{e}
$$

Attentive Encoder-Decoder Models

Attentive Encoder-Decoder Models

Attentive Encoder-Decoder Models

Attention Recap

- Compute new output of decoder as weighted sum of encoder outputs
- Compute pairwise score between each encoder hidden state and decoder hidden state

$$
h_{t}^{e}=\text { encoder output hidden states } \quad h_{t}^{d}=\text { decoder output hidden state }
$$

- Many possible functions for computing scores (dot product, bilinear, etc.)
- Allows for direct connection between decoder and ALL encoder states

Issue with Recurrent Models

- Recurrent functions can't be parallelized because previous state needs to be computed to encode next one

Self-Attention

- Ditch recurrence and compute encoder state representations in parallel!
- Compute pairwise score between each encoder hidden state and the other encoder hidden states

$$
h_{t}^{\ell}=\text { encoder hidden state at time step } t \text { at layer } \ell
$$

Self-Attention

- Compute pairwise score between each encoder hidden state and the other encoder hidden states

$$
\begin{aligned}
& \boldsymbol{h}_{t}^{\ell}=\text { encoder hidden state at time step } \mathrm{t} \text { at layer } \ell \\
& a_{s t}=\frac{\left(\mathbf{W} h_{s}^{\ell}\right)^{T}\left(\mathbf{U} h_{t}^{\ell}\right)}{\sqrt{d}} \quad \alpha_{s t}=\frac{e^{a_{s t}}}{\sum_{j} e^{a_{s i}}} \quad \tilde{h}_{s}^{\ell}=\sum_{t=1}^{T} \alpha_{s t} \mathbf{V} h_{t}^{\ell} \\
& \{1, \ldots, t, \ldots, T\} \\
& \text { includes s! } \\
& \text { Self-attention! }
\end{aligned}
$$

Self-Attention

- Essentially, re-compute representation of state at every time step t using a weighted average of the representations of the other time steps

$$
a_{s t}=\frac{\left(\mathbf{W} h_{s}^{\ell}\right)^{T}\left(\mathbf{U} h_{t}^{\ell}\right)}{\sqrt{d}} \quad \tilde{h}_{s t}^{e}=\sum_{t=1}^{T} \alpha_{s t} \mathbf{V} h_{t}^{e}
$$

Self-Attention

- Used same notation as before for consistency, but actual notation for selfattention in transformers use query (Q), keys (K), values (V :

$$
\mathbf{a}=\frac{\left(\mathbf{W}^{Q} Q\right)\left(\mathbf{W}^{K} K\right)}{\sqrt{d}}
$$

Multi-Headed Self-Attention

- Project V, K, Q into H sub-vectors where H is the number of "heads"

$$
\mathbf{a}_{i}=\frac{\left(\mathbf{W}_{i}^{Q} Q\right)\left(\mathbf{W}_{i}^{K} K\right)}{\sqrt{d / H}}
$$

- Compute attention weights separately for each sub-vector

$$
\alpha_{i}=\operatorname{softmax}\left(\mathbf{a}_{i}\right) \quad \tilde{h}_{i}^{\ell}=\alpha V \mathbf{W}_{i}^{V}
$$

- Concatenate sub-vectors for each head

$$
\tilde{h}^{\ell}=W^{O}\left[\tilde{h}_{0}^{\ell} ; \ldots ; \tilde{h}_{i}^{\ell} ; \ldots ; \tilde{h}_{H}^{\ell}\right]
$$

Transformer Block

- Self-attention is the main innovation of the popular transformer model!
- Each transformer block receives as input the outputs of the previous layer at every time step
- Each block is composed of a multi-headed attention, a layer normalisation, a feedforward network, and another layer normalisation
- There are residual connections before every normalisation layer

Full Transformer

- Full transformer encoder is multiple cascaded transformer blocks
- build up compositional representations of inputs
- No need to propagate state forward in time
- states at each time step computed in parallel!
- Transformer decoder (right) similar to encoder
- second attention layer to compute weighted average of encoder states before FFN

Full Transformer

- Full transformer encoder is multiple cascaded transformer blocks
- build up compositional representations of inputs
- No need to propagate state forward in time
- states at each time step computed in parallel!
- Transformer decoder (right) similar to encoder
- second attention layer to compute weighted average of encoder states before FFN

Full Transformer

- Full trancformor oncodoric multinla cacadod

Recurrent models provided word order information

- N Does self-attention provide word order information?
- Transformer decoder (right) similar to encoder
- second attention layer to compute weighted average of encoder states before FFN

Position Embeddings

- Self-attention provides no word order information
- Computes weighted average over set of vectors
- Word order is pretty crucial to
 understanding language
- How do we fix this?
- Add an additional embedding to the input word that represents a position in the sequence

Position Embeddings

- Self-attention provides no word order information
- Computes weighted average over set of vectors
- Word order is pretty crucial to understanding language
- How do we fix this?
- Add an additional embedding to the input word that represents a position in the sequence

- Early position embeddings encoded a sinusoid function that was offset by a phase shift proportional to sequence position
- In practice, everyone nowadays learns position embeddings from scratch

Other Resources of Interest

- The Annotated Transformer
- https://nlp.seas.harvard.edu/2018/04/03/attention.html
- The Illustrated Transformer
- https://jalammar.github.io/illustrated-transformer/
- Only basics presented here today! Many modifications to initial transformers exist

Demo: Attention Visualization

https://colab.research.google.com/drive/1PEHWRHrvxQvYr9NFRC-E_fr3xDq1htCj

Part 4: Modern NLP
Where do we go from here?

Section Outline

- Advances: NLP Successes, Pretraining, Scale
- New Problems: Robustness, Multimodality, Knowledge, Prompting, Ethics
- Demo: Write with Transformers!

Deep Learning Successes in NLP

Pretraining

Massive Text Corpus

Transformer Language Model

Pretraining: Two Approaches

(Causal, Left-to-right)
Language Modeling

I really enjoyed the movie we watched on \qquad

Masked
 Language Modeling

I really enjoyed the \qquad we watched on Saturday!

Scale

Time

Results

Superhuman results on benchmark datasets!

All top models use transformers!

Robustness

Deep learning models exploit biases (Bolukbasi et al., 2016), annotation artifacts (Gururangan et al., 2018), surface patterns (Li \& Gauthier, 2017), etc.

They struggle to learn robust understanding abilities

"All the impressive achievements of deep learning amount to just curve fitting"

Remaining Problems!

 ©be New Hork eime \quad artificial intelligence
We Teach A.I. Systems
Everything, Including Our Biases

Multimodality

OpenAI
Using natural language training to improve computer vision

Dall-E ${ }_{\text {openai }}^{\text {(}}$

Learning to generate images from natural language descriptions

ai-generated

text promp
ai-generated
images

TEXT PROMPT an illustration of a baby daikon radish in a tutu walking a dog

an armchair in the shape of an avocado

Structured Knowledge Integration

Embedding Representation

Tamid

Liu et al., 2019

Sleph cury and Kas mompon tod Input tor Common NLP tasks: Common NLP tasks

[CLS] [ENT] Steph Curry [ENT] and

Unstructured Knowledge Integration

The middle ear includes the tympanic cavity and the three ossicles. (y)

Question Answering: Answer Generation
supports (\mathbf{y})
Fact Verification Label Generation

This 14th century work
is divided into 3
sections: "Inferno",
sections: "Infer
"Purgatorio
Question Generation

Prompting: A new learning paradigm!

Prompts in Red. GPT3 responses in Blue
Q. How do you draw a bicycle with shapes?
A. You draw a bicycle with two circles connected by a line.
Q. How do you draw a ball with shapes?
A. You draw a ball with one circle.
Q. How do you draw a house with shapes?
A. You draw a house with a trapezium on top of a square.
Q. How do you draw a star with shapes?
A. You draw a star with five triangles.
Q. How do you draw a clock with shapes?
A. You draw a clock with two circles connected by a line.
Q. How do you draw a chair with shapes?
A. You draw a chair with a square on top of a diamond.
Q. How do you draw a telephone with shapes?
A. You draw a telephone with two ovals connected by a line.

- At very large-scale, language models exhibit emergent incontext learning abilities
- Providing examples as input that depict desired behaviour is enough for model to replicate it
- No learning required, though learning can improve this ability

Safety \& Ethics

(Warning: examples contain sensitive content)

Prompt	Generated text				
The man worked as	a car salesman at the local Wal-Mart				
The woman worked as	a prostitute under the name of				
Hariya		$	$	The Black man worked as	a pimp for 15 years.
:---:	:---:				
The White man worked as	a police officer, a judge, a prosecutor, a prosecutor, and the president of the United States.				
The gay person was known for	his love of dancing, but he also did drugs				
The straight person was known for	his ability to find his own voice and to speak clearly.				

- Learned behaviors of large-scale NLP models are incredibly opaque
- Language models learn harmful patterns of bias from large language corpora
- NLP models can reflect and produce toxic and stereotype-laden content from seemingly innocuous inputs
- Models can be exploited in open-world contexts by malicious actors
- How should NLP models be democratised?
https://transformer.huggingface.co/doc/gpt2-large

NLP @ EPFL is growing!

- New Natural Language Processing Lab
- Master's Theses, Semester Projects available every term
- New NLP courses
- Starting Spring 2022: Topics in Natural Language Processing (2 credits)
- Paper reading, paper reviewing, discussion
- Starting Spring 2023: Modern Natural Language Processing (6 credits)
- Lectures, Assignments, Project

