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Part 1: Neural Embeddings



Section Outline

• Review: sparse word vector representations 

• New: Dense word vector representations - CBOW & Skipgram 

• Demo: Similar words for different embedding learning algorithms



Word Representations
• How do we represent natural language sequences for NLP problems?

Model

I really enjoyed the movie we watched on Saturday!

+/-



Sparse Word Representations

• Define a vocabulary V 

• Each word in the vocabulary is 
represented by a sparse vector 

• Dimensionality of sparse vector is 
size of vocabulary (e.g., thousands, 
possibly millions)

I  

really  

enjoyed  

the  

movie  

! 

wi ∈ {0,1}V

[ 0 … 0 0 0 1 … 0 0 ] 

[ 0 … 1 … 0 0 0 0 0 ]  

[ 0 … 0 0 0 1 0 … 0 ]  

[ 0 … 0 1 0 0 0 … 0 ] 

[ 0 … 0 0 0 0 0 … 1 ] 

[ 1 … 0 0 0 0 0 0 0 0]



Word Vector Composition
• To represent sequences, beyond words, define a composition function over 

sparse vectors

I really enjoyed the movie ! [ 1 … 1 1 0 1 … 0 1 ]

I really enjoyed the movie ! [ 0.01 … 0.1 0.1 0 0.001 … 0 0.5 ]

Simple 
Counts

Weighted by  
Corpus Statistics

Many others…



Problem

Similarity is only a function of common words! 

How do you learn learn similarity between words? 

enjoyed 

loved

[ 0 … 0 0 0 1 … 0 0 ] 

[ 0 … 1 … 0 0 0 0 0 ] 

sim( enjoyed, loved ) = 0



Embeddings Goal

How do we train semantics-encoding embeddings of words?

Image Credit: https://towardsdatascience.com/legal-applications-of-neural-word-embeddings-556b7515012f



–J.R. Firth, 1957

“You shall know a word by the company it keeps” 



Context Representations

I really enjoyed the ____ we watched on Saturday!
The ___ growled at me, making me run away.

I need to go to the ____ to pick up some dinner.

Solution:  

Rely on the context in which words occur to learn their meaning 

Context is the set of words that occur nearby



Context Representations

I really enjoyed the ____ we watched on Saturday!
The ___ growled at me, making me run away.

I need to go to the ____ to pick up some dinner.

Solution:  

Rely on the context in which words occur to learn their meaning 

Foundation of distributional semantics

Context is the set of words that occur nearby



Dense Word Vectors
• Represent each word as a high-dimensional*, real-valued vector 

- *Low-dimensional compared to V-dimension sparse representations, but still usually O(102 - 103) 

• Similarity of vectors represents similarity of meaning for particular words

I  

really  

enjoyed  

the  

movie  

! 

[ 0.113  -0.782  1.893  0.984  6.349  … ] 

[ 0.906  0.661  -0.214  -0.894  -0.880  … ]  

[ -0.842  0.647  -0.882  0.045  0.029  … ]  

[ 0.100  0.765  -0.333  -0.538  -0.150  … ] 

[ 0.104  -0.054  -0.268  -0.877  0.005  … ] 

[ 0.439  -0.577  -0.727  0.261  0.699  … ]

word vectors      

word embeddings     

neural embeddings    

dense embeddings  

others…  



Learning Word Embeddings
• Many options, but three common approaches 

• Word2vec - Continuous Bag of Words (CBOW) 

- Learn to predict missing word from surrounding window of words 

• Word2vec - Skip-gram 

- Learn to predict surrounding window of words from given word 

• GloVe 

- Not covered today



Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

enjoyed the we watched

Projection

Sum 

_____

movie



Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

enjoyed the we watched

Projection

Sum 

_____

movie

max P(movie |enjoyed, the, we, watched)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt |wt−2, wt−1, wt+1, wt+2)

max P(wt |{wx}x=t+2
x=t−2)

P(wt |{wx}x=t+2
x=t−2) = softmax(U

t+2

∑
x = t − 2

x ≠ t

wx)



Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

U ∈ ℝd×Vwx ∈ ℝ1×d

enjoyed the we watched

Projection

Sum 

_____

movie

P(wt |{wx}x=t+2
x=t−2) = softmax(U

t+2

∑
x = t − 2

x ≠ t

wx)

softmax(a)i =
eai

∑|a|
j=1 eaj

Projection



Softmax Function
• The softmax function generates a probability distribution from the 

elements of the vector it is given

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

softmax(a)i =
eai

∑|a|
j=1 eaj

V = [ 0.790  -0.851  0.506  0.767  -0.788  0.793  0.887  0.219  -0.052  0.461 ] 

P(V) = [ 0.144  0.028  0.108  0.141  0.030  0.144  0.159  0.081  0.062  0.104 ]  

Softmax(V)



Continuous Bag of Words (CBOW)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyed the we watched

Projection

Sum 

_____

movie

P(wt |{wx}x=t+2
x=t−2) = softmax(U

t+2

∑
x = t − 2

x ≠ t

wx) • Model is trained to maximise the 
probability of the missing word 

- For computation reasons, the model is 
typically trained to minimise the negative 
log probability of the missing word 

• Here, we use a window of N=2, but 
the window size is a hyperparameter  

• For computational reasons, a 
hierarchical softmax used to 
compute distribution



Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

Projection

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)



Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

Projection

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)



Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

max log P(wt−2, wt−1, wt+1, wt+2 |wt)

Projection



Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

max log P(wt−2, wt−1, wt+1, wt+2 |wt)

max (log P(wt−2 |wt) + log P(wt−1 |wt)

+log P(wt+1 |wt) + log P(wt+2 |wt))
Projection



Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

max log P(wt−2, wt−1, wt+1, wt+2 |wt)

max (log P(wt−2 |wt) + log P(wt−1 |wt)

+log P(wt+1 |wt) + log P(wt+2 |wt))
P(wx |wt) = softmax(Uwt)

Projection



max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

P(wx |wt) = softmax(Uwt)

U ∈ ℝd×Vwt ∈ ℝ1×dProjection

Projection



max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

• Model is trained to minimise the 
negative log probability of the 
surrounding words 

• Here, we use a window of N=2, but the 
window size is a hyperparameter to set 

• Typically, set large window (N=10), but 
randomly select  as dynamic 
window size so that closer words 
contribute more to learning

i ∈ [1,N]

Projection



max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram vs. CBOW
• Question: Do you expect a difference between what is learned by CBOW and Skipgram methods?

Projection

enjoyed the we watched

Projection

Sum 

_____

movie



Demo

https://colab.research.google.com/drive/1aCWxocr8plpRtRj02ODmJyjKxf8g563h?usp=sharing



Other Resources of Interest

• GloVe Vectors (Pennington et al., 2014): 

- Use the co-occurrence matrix between words to compute word vectors 

- https://nlp.stanford.edu/projects/glove/ 

• Retrofitting word vectors to semantic lexicons (Faruqui et al., 2014)  

- Training word vectors to encode semantic relationships from high-level 
resources: WordNet, PPDB, and FrameNet

https://nlp.stanford.edu/projects/glove/


Part 2: Recurrent Neural  
Networks for Sequence Modeling



Section Outline

• Background: Language Modeling, Feedforward Neural Networks, 
Backpropagation 

• Content - Models: Recurrent Neural Networks, LSTMs, Encoder-Decoders 

• Content - Algorithms: Backpropagation through Time, Vanishing 
Gradients



Language Modeling
• Given a subsequence, predict the next word: The cat chased the _____



Fixed Context Language Models
• Given a subsequence, predict the next word: The cat chased the _____

The cat chased the

Concatenation

Feedforward Neural Network

mouse

P(y) = softmax(bo + Wo tanh(bh + Whx))



• Given a subsequence, predict the next word:

The starving cat fanatically chased the elusive _____

cat chased the elusive

Concatenation

Feedforward Neural Network

dream

The starving fanatically

Fixed Context Language Models



Problem

Fixed context windows limit language modelling capacity 

How can we extend to arbitrary length sequences? 



Recurrent Neural Networks

• Solution: Recurrent neural networks — NNs with feedback loops

ht

Input

State

Output

xt

zt



Unrolling the RNN

xt

ht

zt

xt−1

ht−1

zt−1

xt+1

zt+1

ht−2 ht+1

Unrolling the RNN across all time steps gives full computation graph

Allows for learning from entire sequence history, regardless of length



Classical RNN: Elman Network

xt

ht

zt

xt−1

ht−1

zt−1

ht−2

zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)



Classical RNN: Elman Network

h3

x2 x3 x4 x5x1

h2 h4 h5h1

cat chasedThe starving fanatically



Classical RNN: Elman Network

h3

x2 x3 x4 x5x1

h2 h4 h5h1

cat chasedThe starving fanatically



Classical RNN: Elman Network

h1

x6

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically



Classical RNN: Elman Network

x6

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically



Classical RNN: Elman Network

x6

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x7

elusive



Classical RNN: Elman Network

x6

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x7

elusive

z7

mouse
zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)



Backpropagation Review: FFNs

x1

x2

x3

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

wℓ=0
11

wℓ=0
33

ℒ( ̂y, y) = y log P( ̂y) + (1 − y)log P(1 − ̂y)



Backpropagation Review: FFNs
h2

̂y

ℒ( ̂y, y) = y log P( ̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3



Backpropagation Review: FFNs
h2

̂y

ℒ( ̂y, y) = y log P( ̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

̂y = ϕo(u)



Backpropagation Review: FFNs
h2

̂y

ℒ( ̂y, y) = y log P( ̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

̂y = ϕo(u)

u = wo
1 × ϕ12( . ) + wo

2 × ϕ22( . ) + wo
3 × ϕ32( . )



Backpropagation Review: FFNs
h2

̂y

ℒ( ̂y, y) = y log P( ̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ( ̂y, y)
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12( . )

̂y = ϕo(u)

u = wo
1 × ϕ12( . ) + wo

2 × ϕ22( . ) + wo
3 × ϕ32( . )



Backpropagation Review: FFNs
h2

̂y

ℒ( ̂y, y) = y log P( ̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ( ̂y, y)
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12( . )

̂y = ϕo(u)

u = wo
1 × ϕ12( . ) + wo

2 × ϕ22( . ) + wo
3 × ϕ32( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1



Backpropagation Review: FFNs
h2

̂y

ℒ( ̂y, y) = y log P( ̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ( ̂y, y)
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12( . )

̂y = ϕo(u)

u = wo
1 × ϕ12( . ) + wo

2 × ϕ22( . ) + wo
3 × ϕ32( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1



Backpropagation Review: FFNs
h2

̂y

ℒ( ̂y, y) = y log P( ̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ( ̂y, y)
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12( . )

̂y = ϕo(u)

u = wo
1 × ϕ12( . ) + wo

2 × ϕ22( . ) + wo
3 × ϕ32( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

Depends on label y



Backpropagation Review: FFNs
h2

̂y

ℒ( ̂y, y) = y log P( ̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ( ̂y, y)
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12( . )

̂y = ϕo(u)

u = wo
1 × ϕ12( . ) + wo

2 × ϕ22( . ) + wo
3 × ϕ32( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

Depends on label y

Depends on ϕo



h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ( ̂y, y)
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1



h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo
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Backpropagation Review: FFNs
∂ℒ( ̂y, y)
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

v = wℓ=1
11 × ϕ11( . ) + wℓ=1

21 × ϕ21( . ) + wℓ=1
31 × ϕ31( . )



h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo
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1

wo
2
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3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ( ̂y, y)
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ( ̂y, y)
∂ϕ11( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11( . )

v = wℓ=1
11 × ϕ11( . ) + wℓ=1

21 × ϕ21( . ) + wℓ=1
31 × ϕ31( . )
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ϕ22

ϕ32ϕ31
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wℓ=1
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Backpropagation Review: FFNs
∂ℒ( ̂y, y)
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w0

1
∂ϕ12(v)
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11

v = wℓ=1
11 × ϕ11( . ) + wℓ=1

21 × ϕ21( . ) + wℓ=1
31 × ϕ31( . )
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Backpropagation Review: FFNs
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w0

1
∂ϕ12(v)

∂v
wℓ=1

11

v = wℓ=1
11 × ϕ11( . ) + wℓ=1

21 × ϕ21( . ) + wℓ=1
31 × ϕ31( . )



h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ( ̂y, y)
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ( ̂y, y)
∂ϕ11( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11( . )

=
∂ℒ( ̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1
∂ϕ12(v)

∂v
wℓ=1

11

v = wℓ=1
11 × ϕ11( . ) + wℓ=1

21 × ϕ21( . ) + wℓ=1
31 × ϕ31( . )

Depends on ϕ12



Backpropagation through Time

xt

zt

xt−1

ht−1ht−2

zt = σ(Wzhht + bz)
ht = σ(Whxxt + Whhht−1 + bh)

∂ht

∂xt
=

∂σ(u)
∂u

∂u
∂xt

=
∂σ(u)

∂u
Whx

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(u)

∂u
Whh

∂zt

∂ht
=

∂σ(v)
∂v

∂v
∂ht

=
∂σ(v)

∂v
Wzh

v = Wzhht + bz

u = Whxxt + Whhht−1 + bh

zt = σ(v)

ht = σ(u)



Backpropagation through Time

xt

zt

xt−1

ht−1ht−2

zt = σ(Wzhht + bz)
ht = σ(Whxxt + Whhht−1 + bh)

∂ht

∂xt
=

∂σ(u)
∂u

∂u
∂xt

=
∂σ(u)

∂u
Whx

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(u)
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Vanishing Gradients
• Learning Problem: Long unrolled networks will crush gradients that 

backpropagate to earlier time steps

ht = σ(Whxxt + Whhht−1 + bh)
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Vanishing Gradients
• Learning Problem: Long unrolled networks will crush gradients that 

backpropagate to earlier time steps

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

= Whh
∂σ(u)

∂u

ht = σ(Whxxt + Whhht−1 + bh)
u = Whxxt + Whhht−1 + bh



Vanishing Gradients

ht

xt−1

zt−1

xt

zt

xt+1

zt+1

xt+2

zt+1

xt−2

zt−2

ht−1 ht+1 ht+2ht−2ht−3

• While this is a problem in many neural networks, it is especially 
pronounced in Elman networks (RNNs) due to the sigmoid activation



Long Short Term Memory (LSTM)

xt
ht

σ σ

σ
ct−1

c̃t

ft

it ot

ϕ ϕ

ft = σ(Wfxxt + Wfhht−1 + bf)
it = σ(Wixxt + Wihht−1 + bi)
ot = σ(Woxxt + Wohht−1 + bo)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)

ct

ht−1

ht−1ht−1

ct = it × c̃t + ft × ct−1

ht = ot × ϕ(ct)

Gates:



Cell State

c̃t = ϕ(Wcxxt + Wchht−1 + bc)
ct = it × c̃t + ft × ct−1

xt
ht

σ σ
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ot

ϕ

ht−1

ht−1ht−1

ct

ct−1
c̃t

it

ft

ϕ



Forget Gate
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ct

ht−1ht−1

Gates:
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ht−1

ft = σ(Wfxxt + Wfhht−1 + bf)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)
ct = it × c̃t + ft × ct−1



Input Gate
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Output Gate
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Long Short Term Memory (LSTM)
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ht
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ft = σ(Wfxxt + Wfhht−1 + bf)
it = σ(Wixxt + Wihht−1 + bi)
ot = σ(Woxxt + Wohht−1 + bo)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)

ct

ht−1

ht−1ht−1

ct = it × c̃t + ft × ct−1

ht = ot × ϕ(ct)

Gates:



Vanishing Gradients?

ct = it × c̃t + ft × ct−1

∂ct

∂ct−1
= ft

Recurrent Neural Networks Long Short Term Memory

State maintained by cell value

Gradient set by value of forget gate

State maintained by hidden state feedback

Gradient systemically squashed by sigmoid

ht = σ(Whxxt + Whhht−1 + bh)

Can still vanish, but only if forget gate closes!



Encoder-Decoder Models
• Encode a sequence fully with one model and use its representation to 

seed a second model that decodes another sequence

Decoder 
LSTM

Decoder 
LSTM

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Decoder 
LSTM

y0 ̂y1 ̂y2 ̂y3



Encoder-Decoder Models

• e.g., machine translation

Decoder 
LSTM

Decoder 
LSTM

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Decoder 
LSTM

y0 ̂y1 ̂y2 ̂y3

m’ appelle AntoineJe <START> am AntoineI

am AntoineI <END>



Encoder-Decoder Models
• Input doesn’t need to be text 

• e.g., image captioning

Decoder 
LSTM

Decoder 
LSTM

̂y1 ̂y2 ̂y3 ̂y4

Decoder 
LSTM

Decoder 
LSTM

y0 ̂y1 ̂y2 ̂y3

<START> on bikeMonkey

on bikeMonkey <END>

Image 
Encoder

Photo credit: J Hovenstine Studios



Bidirectionality
• Decoder needs to be unidirectional (can’t know the future…) 

• Encoder sequence representation augmented by encoding in both directions

x2 x3 x4x1

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

hfwd
t

hbwd
t



Bidirectionality
• Decoder needs to be unidirectional (can’t know the future…) 

• Encoder sequence representation augmented by encoding in both directions

x2 x3 x4x1

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

hfwd
t

hbwd
t

Decoder 
LSTM[hfwd

t ; hbwd
t ]



Other Resources of Interest

• Gated Recurrent Units (Cho et al., 2014): 

- Different approach for maintaining state and avoiding vanishing 
gradients 

• LSTM: A Search Space Odyssey (Greff et al., 2015)  

- Examine 5000 different modifications to LSTMs — none significantly 
better than original architecture 

• Only basics presented here today! Many offshoots of these techniques!



Part 3: Attentive Neural 
Modeling with Transformers



Section Outline

• Background: Long-term Dependency Modeling 

• Content: Attention, Self-Attention, Multi-headed Attention, Transformer 
Blocks, Transformers 

• Demo: Visualizing Transformer Attention



Issue with Recurrent Models
• Multiple steps of state overwriting makes it challenging to learn long-

range dependencies. 

• Nearby words should affect each other more than farther ones, but RNNs 
make it challenging to learn any long-range interactions

They tuned, discussed for a moment, then struck up a lively 
jig. Everyone joined in, turning the courtyard into an even 
more chaotic scene, people now dancing in circles, swinging 
and spinning in circles, everyone making up their own dance 
steps. I felt my feet tapping, my body wanting to move. 
Aside from writing, I ’ve always loved dancing .

LAMBADA dataset, 2016



Attentive Encoder-Decoder Models

• Idea: Use the output of 
the Decoder LSTM to 
compute an attention 
over all the outputs of 
the encoder LSTM 

• Attention is a weighted 
average over a set 

• Question: what setting 
might this be useful in?

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Attention

x2 x3 x4x1 y0

̂y1



Review: LSTMs

xt ht

σ σ

σ
ct−1

c̃t

ft

it ot

ϕ ϕct

ht−1

ht−1ht−1

c̃t = ϕ(Wcxxt + Wchht−1 + bc)
ct = it × c̃t + ft × ct−1

ht = ot × ϕ(ct)



Attention Function

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

he
2 he

3 he
4he

1 hd
1

he
t = encoder output hidden states hd

t = decoder output hidden states

• Set output of decoder as weighted sum of encoder outputs 

• Compute similarity between decoder hidden state and encoder output states



Attention Function

he
t = encoder output hidden states hd

t = decoder output hidden state

• Compute similarity between decoder hidden state and encoder output 
states 

• Compute pairwise score between each encoder hidden state and decoder 
hidden state

he
1 hd

1

,( )f
he

2 hd
1

,( )f
he

3 hd
1

,( )fa1 = a2 = a3 = 



Attention Formulas
• Pairwise scores can be computed using a variety of functions

Attention Function Formula

Bilinear

Concatenation

Dot Product

Scaled Dot Product

a = heWhd

a = vTϕ(W[he; hd])

a =
(Whe)T(Uhd)

d

a = he ⋅ hd



Attention Function
• Compute pairwise score between each encoder hidden state and decoder 

hidden state 

• Convert scores to distribution over encoder hidden states and computed 
weighted average:

he
1 hd

1

,( )f
he

2 hd
1

,( )f
he

3 hd
1

,( )fa1 = a2 = a3 = 

αt =
eat

∑j eaj
h̃d

1 =
T

∑
t=1

αthe
tSoftmax!



Attentive Encoder-Decoder Models

Pass the output of the 
attention layer  
to your output layer, 
which predicts the most 
likely output token

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Attention

x2 x3 x4x1 y0

̂y1

h̃d
1

h̃d
1

̂y1



Attentive Encoder-Decoder Models

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Attention

Decoder 
LSTM

Attention

x2 x3 x4x1 y0

̂y2

̂y1

̂y1

h̃d
2



Attentive Encoder-Decoder Models

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Decoder 
LSTM

Attention

Decoder 
LSTM

Attention

x2 x3 x4x1 y0

̂y2

̂y1

̂y1

Attention

Decoder 
LSTM

̂y3

̂y2

h̃d
3



• Compute new output of decoder as weighted sum of encoder outputs 

• Compute pairwise score between each encoder hidden state and decoder 
hidden state 

• Many possible functions for computing scores (dot product, bilinear, etc.) 

• Allows for direct connection between decoder and ALL encoder states

Attention Recap

he
t = encoder output hidden states hd

t = decoder output hidden state



Issue with Recurrent Models
• Recurrent functions can’t be parallelized because previous state needs to 

be computed to encode next one

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM

Encoder 
LSTM



• Ditch recurrence and compute encoder state representations in parallel! 

• Compute pairwise score between each encoder hidden state and the 
other encoder hidden states

Self-Attention

hℓ
t = encoder hidden state at time step t at layer  ℓ

h0
2 h0

3 h0
4h0

1



• Compute pairwise score between each encoder hidden state and the 
other encoder hidden states

Self-Attention

hℓ
t = encoder hidden state at time step t at layer  ℓ

h0
1 h0

3

,( )fa31 = 

αst =
east

∑j easj
h̃ℓ

s =
T

∑
t=1

αstVhℓ
tast =

(Whℓ
s )T(Uhℓ

t )

d

hℓ
t hℓ

s

,( )fast = 

{1, …, t, …, T}  
includes s! 

Self-attention!



Self-Attention
• Essentially, re-compute representation of state at every time step t using a 

weighted average of the representations of the other time steps

h0
2 h0

3 h0
4h0

1

Self 
Attention

h̃1
3

αst =
east

∑j easj

h̃ℓ
s =

T

∑
t=1

αstVhℓ
tast =

(Whℓ
s )T(Uhℓ

t )

d



Self-Attention
• Used same notation as before for consistency, but actual notation for self-

attention in transformers use query (Q), keys (K), values (V):

h0
2 h0

3 h0
4h0

1

Self 
Attention

h̃1
3

α = softmax(a)

h̃ℓ = WOαVWV

a =
(WQQ)(WKK)

d Q = hℓ
s

K = V = {hℓ
t }T

t=0



Multi-Headed Self-Attention
• Project V, K, Q into H sub-vectors where H is the 

number of “heads” 

• Compute attention weights separately for each 
sub-vector 

• Concatenate sub-vectors for each head

h̃ℓ
i = αVWV

i

ai =
(WQ

i Q)(WK
i K)

d/H

h̃ℓ = WO[ h̃ℓ
0; . . . ; h̃ℓ

i ; . . . ; h̃ℓ
H ]

Vaswani et al., 2017

αi = softmax(ai)



Transformer Block
• Self-attention is the main innovation of the 

popular transformer model! 

• Each transformer block receives as input the 
outputs of the previous layer at every time step 

• Each block is composed of a multi-headed 
attention, a layer normalisation, a feedforward 
network, and another layer normalisation 

• There are residual connections before every 
normalisation layer 

• Layer normalisation + residual connections 
don’t add capacity, but make training easier

Vaswani et al., 2017



Full Transformer

• Full transformer encoder is multiple cascaded 
transformer blocks  

- build up compositional representations of inputs 

• No need to propagate state forward in time 

- states at each time step computed in parallel! 

• Transformer decoder (right) similar to encoder 

- second attention layer to compute weighted 
average of encoder states before FFN

Vaswani et al., 2017
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Full Transformer

• Full transformer encoder is multiple cascaded 
transformer blocks  

- build up compositional representations of inputs 

• No need to propagate state forward in time 

- states at each time step computed in parallel! 

• Transformer decoder (right) similar to encoder 

- second attention layer to compute weighted 
average of encoder states before FFN

Recurrent models provided word order information 

Does self-attention provide word order information? 

Vaswani et al., 2017



Position Embeddings
• Self-attention provides no word order 

information 

- Computes weighted average over set of 
vectors 

• Word order is pretty crucial to 
understanding language 

- How do we fix this? 

• Add an additional embedding to the input 
word that represents a position in the 
sequence

Vaswani et al., 2017



Position Embeddings
• Self-attention provides no word order 

information 

- Computes weighted average over set of 
vectors 

• Word order is pretty crucial to 
understanding language 

- How do we fix this? 

• Add an additional embedding to the input 
word that represents a position in the 
sequence

Vaswani et al., 2017

• Early position embeddings encoded a 
sinusoid function that was offset by a phase 
shift proportional to sequence position 

• In practice, everyone nowadays learns 
position embeddings from scratch



Other Resources of Interest

• The Annotated Transformer 

- https://nlp.seas.harvard.edu/2018/04/03/attention.html 

• The Illustrated Transformer 

- https://jalammar.github.io/illustrated-transformer/ 

• Only basics presented here today! Many modifications to initial 
transformers exist



Demo: Attention Visualization

https://colab.research.google.com/drive/1PEHWRHrvxQvYr9NFRC-E_fr3xDq1htCj



Part 4: Modern NLP 
Where do we go from here?



Section Outline

• Advances: NLP Successes, Pretraining, Scale 

• New Problems: Robustness, Multimodality, Knowledge, Prompting, Ethics 

• Demo: Write with Transformers!



Deep Learning Successes in NLP



Pretraining

Transformer Language ModelMassive Text Corpus

Used to

Learn

(Radford et al., 2018, 2019, many others)



Pretraining: Two Approaches

(Radford et al., 2018, 2019, many others)

I really enjoyed the ____ we 
watched on Saturday!

I really enjoyed the movie we 
watched on ____ 

(Causal, Left-to-right) 
Language Modeling

Masked 
Language Modeling

(Devlin et al., 2018; Liu et al., 2020)
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Results

Superhuman results on benchmark datasets! 

All top models use transformers!



“All the impressive achievements of deep 
learning amount to just curve fitting”

(Pearl, 2018)

Deep learning models exploit biases (Bolukbasi et al., 2016), annotation  
artifacts (Gururangan et al., 2018), surface patterns (Li & Gauthier, 2017), etc. 

They struggle to learn robust understanding abilities                                                                                                  

Robustness



Remaining Problems!



Multimodality
CLIP

https://openai.com/blog/clip/ https://openai.com/blog/dall-e/

Using natural language training 
to improve computer vision

Dall-E
Learning to generate images from 
natural language descriptions



Structured Knowledge Integration

Su et al., 2020 Wang et al., 2020

Zhang et al., 2019Liu et al., 2019



Unstructured Knowledge Integration

Lewis et al., 2020

Borgeaud et al., 2021Chang et al., 2020



Prompting: A new learning paradigm!

• At very large-scale, language 
models exhibit emergent in-
context learning abilities 

• Providing examples as input that 
depict desired behaviour is 
enough for model to replicate it 

• No learning required, though 
learning can improve this ability



Safety & Ethics 
• Learned behaviors of large-scale NLP 

models are incredibly opaque 

- Language models learn harmful patterns of bias 
from large language corpora  

• NLP models can reflect and produce 
toxic and stereotype-laden content 
from seemingly innocuous inputs 

• Models can be exploited in open-world 
contexts by malicious actors 

• How should NLP models be 
democratised?

(Warning: examples contain sensitive content) 

Sheng et al., 2020



Demo

https://transformer.huggingface.co/doc/gpt2-large



NLP @ EPFL is growing!

• New Natural Language Processing Lab 

- Master’s Theses, Semester Projects available every term 

• New NLP courses 

- Starting Spring 2022: Topics in Natural Language Processing (2 credits) 

‣ Paper reading, paper reviewing, discussion 

- Starting Spring 2023: Modern Natural Language Processing (6 credits) 

‣ Lectures, Assignments, Project


