
Deep Learning for
Natural Language Processing

Antoine Bosselut

Machine Translation

Conversational Systems

Question Answering

Lecture Outline

• Introduction

• Section 1 - Neural Embeddings

• Section 2 - Recurrent Neural Networks for Sequence Modeling

• Section 3 - Attentive Neural Modeling with Transformers

• Section 4 - Modern NLP: What comes next?

Part 1: Neural Embeddings

Section Outline

• Review: sparse word vector representations

• New: Dense word vector representations - CBOW & Skipgram

• Demo: Similar words for different embedding learning algorithms

Word Representations
• How do we represent natural language sequences for NLP problems?

Model

I really enjoyed the movie we watched on Saturday!

+/-

Sparse Word Representations

• Define a vocabulary V

• Each word in the vocabulary is
represented by a sparse vector

• Dimensionality of sparse vector is
size of vocabulary (e.g., thousands,
possibly millions)

I

really

enjoyed

the

movie

!

wi ∈ {0,1}V

[0 … 0 0 0 1 … 0 0]

[0 … 1 … 0 0 0 0 0]

[0 … 0 0 0 1 0 … 0]

[0 … 0 1 0 0 0 … 0]

[0 … 0 0 0 0 0 … 1]

[1 … 0 0 0 0 0 0 0 0]

Word Vector Composition
• To represent sequences, beyond words, define a composition function over

sparse vectors

I really enjoyed the movie ! [1 … 1 1 0 1 … 0 1]

I really enjoyed the movie ! [0.01 … 0.1 0.1 0 0.001 … 0 0.5]

Simple
Counts

Weighted by
Corpus Statistics

Many others…

Problem

Similarity is only a function of common words!

How do you learn learn similarity between words?

enjoyed

loved

[0 … 0 0 0 1 … 0 0]

[0 … 1 … 0 0 0 0 0]

sim(enjoyed, loved) = 0

Embeddings Goal

How do we train semantics-encoding embeddings of words?

Image Credit: https://towardsdatascience.com/legal-applications-of-neural-word-embeddings-556b7515012f

–J.R. Firth, 1957

“You shall know a word by the company it keeps”

Context Representations

I really enjoyed the ____ we watched on Saturday!
The ___ growled at me, making me run away.

I need to go to the ____ to pick up some dinner.

Solution:

Rely on the context in which words occur to learn their meaning

Context is the set of words that occur nearby

Context Representations

I really enjoyed the ____ we watched on Saturday!
The ___ growled at me, making me run away.

I need to go to the ____ to pick up some dinner.

Solution:

Rely on the context in which words occur to learn their meaning

Foundation of distributional semantics

Context is the set of words that occur nearby

Dense Word Vectors
• Represent each word as a high-dimensional*, real-valued vector

- *Low-dimensional compared to V-dimension sparse representations, but still usually O(102 - 103)

• Similarity of vectors represents similarity of meaning for particular words

I

really

enjoyed

the

movie

!

[0.113 -0.782 1.893 0.984 6.349 …]

[0.906 0.661 -0.214 -0.894 -0.880 …]

[-0.842 0.647 -0.882 0.045 0.029 …]

[0.100 0.765 -0.333 -0.538 -0.150 …]

[0.104 -0.054 -0.268 -0.877 0.005 …]

[0.439 -0.577 -0.727 0.261 0.699 …]

word vectors

word embeddings

neural embeddings

dense embeddings

others…

Learning Word Embeddings
• Many options, but three common approaches

• Word2vec - Continuous Bag of Words (CBOW)

- Learn to predict missing word from surrounding window of words

• Word2vec - Skip-gram

- Learn to predict surrounding window of words from given word

• GloVe

- Not covered today

Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

enjoyed the we watched

Projection

Sum

movie

Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

enjoyed the we watched

Projection

Sum

movie

max P(movie |enjoyed, the, we, watched)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt |wt−2, wt−1, wt+1, wt+2)

max P(wt |{wx}x=t+2
x=t−2)

P(wt |{wx}x=t+2
x=t−2) = softmax(U

t+2

∑
x = t − 2

x ≠ t

wx)

Continuous Bag of Words (CBOW)
• Predict the missing word from a window of surrounding words

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

U ∈ ℝd×Vwx ∈ ℝ1×d

enjoyed the we watched

Projection

Sum

movie

P(wt |{wx}x=t+2
x=t−2) = softmax(U

t+2

∑
x = t − 2

x ≠ t

wx)

softmax(a)i =
eai

∑|a|
j=1 eaj

Projection

Softmax Function
• The softmax function generates a probability distribution from the

elements of the vector it is given

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

softmax(a)i =
eai

∑|a|
j=1 eaj

V = [0.790 -0.851 0.506 0.767 -0.788 0.793 0.887 0.219 -0.052 0.461]

P(V) = [0.144 0.028 0.108 0.141 0.030 0.144 0.159 0.081 0.062 0.104]

Softmax(V)

Continuous Bag of Words (CBOW)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyed the we watched

Projection

Sum

movie

P(wt |{wx}x=t+2
x=t−2) = softmax(U

t+2

∑
x = t − 2

x ≠ t

wx) • Model is trained to maximise the
probability of the missing word

- For computation reasons, the model is
typically trained to minimise the negative
log probability of the missing word

• Here, we use a window of N=2, but
the window size is a hyperparameter

• For computational reasons, a
hierarchical softmax used to
compute distribution

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

Projection

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

Projection

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

max log P(wt−2, wt−1, wt+1, wt+2 |wt)

Projection

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

max log P(wt−2, wt−1, wt+1, wt+2 |wt)

max (log P(wt−2 |wt) + log P(wt−1 |wt)

+log P(wt+1 |wt) + log P(wt+2 |wt))
Projection

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

enjoyedthewewatched

movie

max P(enjoyed, the, we, watched |movie)

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

max P(wt−2, wt−1, wt+1, wt+2 |wt)

max log P(wt−2, wt−1, wt+1, wt+2 |wt)

max (log P(wt−2 |wt) + log P(wt−1 |wt)

+log P(wt+1 |wt) + log P(wt+2 |wt))
P(wx |wt) = softmax(Uwt)

Projection

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

P(wx |wt) = softmax(Uwt)

U ∈ ℝd×Vwt ∈ ℝ1×dProjection

Projection

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram
• We can also learn embeddings by predicting the surrounding context from a single word

• Model is trained to minimise the
negative log probability of the
surrounding words

• Here, we use a window of N=2, but the
window size is a hyperparameter to set

• Typically, set large window (N=10), but
randomly select as dynamic
window size so that closer words
contribute more to learning

i ∈ [1,N]

Projection

max P(wt = movie |wt−2 = enjoyed, wt−1 = the, wt+1 = we, wt+2 = watched)

enjoyedthewewatched

movie

Skip-gram vs. CBOW
• Question: Do you expect a difference between what is learned by CBOW and Skipgram methods?

Projection

enjoyed the we watched

Projection

Sum

movie

Demo

https://colab.research.google.com/drive/1aCWxocr8plpRtRj02ODmJyjKxf8g563h?usp=sharing

Other Resources of Interest

• GloVe Vectors (Pennington et al., 2014):

- Use the co-occurrence matrix between words to compute word vectors

- https://nlp.stanford.edu/projects/glove/

• Retrofitting word vectors to semantic lexicons (Faruqui et al., 2014)

- Training word vectors to encode semantic relationships from high-level
resources: WordNet, PPDB, and FrameNet

https://nlp.stanford.edu/projects/glove/

Part 2: Recurrent Neural
Networks for Sequence Modeling

Section Outline

• Background: Language Modeling, Feedforward Neural Networks,
Backpropagation

• Content - Models: Recurrent Neural Networks, LSTMs, Encoder-Decoders

• Content - Algorithms: Backpropagation through Time, Vanishing
Gradients

Language Modeling
• Given a subsequence, predict the next word: The cat chased the _____

Fixed Context Language Models
• Given a subsequence, predict the next word: The cat chased the _____

The cat chased the

Concatenation

Feedforward Neural Network

mouse

P(y) = softmax(bo + Wo tanh(bh + Whx))

• Given a subsequence, predict the next word:

The starving cat fanatically chased the elusive _____

cat chased the elusive

Concatenation

Feedforward Neural Network

dream

The starving fanatically

Fixed Context Language Models

Problem

Fixed context windows limit language modelling capacity

How can we extend to arbitrary length sequences?

Recurrent Neural Networks

• Solution: Recurrent neural networks — NNs with feedback loops

ht

Input

State

Output

xt

zt

Unrolling the RNN

xt

ht

zt

xt−1

ht−1

zt−1

xt+1

zt+1

ht−2 ht+1

Unrolling the RNN across all time steps gives full computation graph

Allows for learning from entire sequence history, regardless of length

Classical RNN: Elman Network

xt

ht

zt

xt−1

ht−1

zt−1

ht−2

zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)

Classical RNN: Elman Network

h3

x2 x3 x4 x5x1

h2 h4 h5h1

cat chasedThe starving fanatically

Classical RNN: Elman Network

h3

x2 x3 x4 x5x1

h2 h4 h5h1

cat chasedThe starving fanatically

Classical RNN: Elman Network

h1

x6

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

Classical RNN: Elman Network

x6

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

Classical RNN: Elman Network

x6

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x7

elusive

Classical RNN: Elman Network

x6

h6

the

h3

x2 x3 x4 x5

h2 h4 h5

cat chasedstarving fanatically

x7

elusive

z7

mouse
zt = σ(Wzhht + bz)

ht = σ(Whxxt + Whhht−1 + bh)

Backpropagation Review: FFNs

x1

x2

x3

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

wℓ=0
11

wℓ=0
33

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

̂y = ϕo(u)

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

Depends on label y

Backpropagation Review: FFNs
h2

̂y

ℒ(̂y, y) = y log P(̂y) + (1 − y)log P(1 − ̂y)

ϕ12

ϕ22

ϕ32

ϕo

wo
1

wo
2

wo
3

∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

̂y = ϕo(u)

u = wo
1 × ϕ12(.) + wo

2 × ϕ22(.) + wo
3 × ϕ32(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

Depends on label y

Depends on ϕo

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ(̂y, y)
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11(.)

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ(̂y, y)
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1
∂ϕ12(v)

∂v
wℓ=1

11

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ(̂y, y)
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1
∂ϕ12(v)

∂v
wℓ=1

11

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

h1 h2

̂y

ϕ11 ϕ12

ϕ22

ϕ32ϕ31

ϕ21 ϕo

wo
1

wo
2

wo
3

wℓ=1
11

wℓ=1
33

…

Backpropagation Review: FFNs
∂ℒ(̂y, y)
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1

∂ℒ(̂y, y)
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ ̂y
∂u

∂u
∂ϕ12(v)

∂ϕ12(v)
∂v

∂v
∂ϕ11(.)

=
∂ℒ(̂y, y)

∂ ̂y
∂ϕo(u)

∂u
w0

1
∂ϕ12(v)

∂v
wℓ=1

11

v = wℓ=1
11 × ϕ11(.) + wℓ=1

21 × ϕ21(.) + wℓ=1
31 × ϕ31(.)

Depends on ϕ12

Backpropagation through Time

xt

zt

xt−1

ht−1ht−2

zt = σ(Wzhht + bz)
ht = σ(Whxxt + Whhht−1 + bh)

∂ht

∂xt
=

∂σ(u)
∂u

∂u
∂xt

=
∂σ(u)

∂u
Whx

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(u)

∂u
Whh

∂zt

∂ht
=

∂σ(v)
∂v

∂v
∂ht

=
∂σ(v)

∂v
Wzh

v = Wzhht + bz

u = Whxxt + Whhht−1 + bh

zt = σ(v)

ht = σ(u)

Backpropagation through Time

xt

zt

xt−1

ht−1ht−2

zt = σ(Wzhht + bz)
ht = σ(Whxxt + Whhht−1 + bh)

∂ht

∂xt
=

∂σ(u)
∂u

∂u
∂xt

=
∂σ(u)

∂u
Whx

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(u)

∂u
Whh

∂zt

∂ht
=

∂σ(v)
∂v

∂v
∂ht

=
∂σ(v)

∂v
Wzh

∂zt

∂ht−1
=

∂σ(v)
∂v

∂v
∂ht

∂σ(u)
∂u

∂u
∂ht−1

=
∂σ(v)

∂v
Wzh

∂σ(u)
∂u

Whh

v = Wzhht + bz

u = Whxxt + Whhht−1 + bh

zt = σ(v)

ht = σ(u)

Vanishing Gradients
• Learning Problem: Long unrolled networks will crush gradients that

backpropagate to earlier time steps

ht = σ(Whxxt + Whhht−1 + bh)

Vanishing Gradients
• Learning Problem: Long unrolled networks will crush gradients that

backpropagate to earlier time steps

ht = σ(Whxxt + Whhht−1 + bh)
u = Whxxt + Whhht−1 + bh

Vanishing Gradients
• Learning Problem: Long unrolled networks will crush gradients that

backpropagate to earlier time steps

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

= Whh
∂σ(u)

∂u

ht = σ(Whxxt + Whhht−1 + bh)
u = Whxxt + Whhht−1 + bh

Vanishing Gradients
• Learning Problem: Long unrolled networks will crush gradients that

backpropagate to earlier time steps

∂ht

∂ht−1
=

∂σ(u)
∂u

∂u
∂ht−1

= Whh
∂σ(u)

∂u

ht = σ(Whxxt + Whhht−1 + bh)
u = Whxxt + Whhht−1 + bh

Vanishing Gradients

ht

xt−1

zt−1

xt

zt

xt+1

zt+1

xt+2

zt+1

xt−2

zt−2

ht−1 ht+1 ht+2ht−2ht−3

• While this is a problem in many neural networks, it is especially
pronounced in Elman networks (RNNs) due to the sigmoid activation

Long Short Term Memory (LSTM)

xt
ht

σ σ

σ
ct−1

c̃t

ft

it ot

ϕ ϕ

ft = σ(Wfxxt + Wfhht−1 + bf)
it = σ(Wixxt + Wihht−1 + bi)
ot = σ(Woxxt + Wohht−1 + bo)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)

ct

ht−1

ht−1ht−1

ct = it × c̃t + ft × ct−1

ht = ot × ϕ(ct)

Gates:

Cell State

c̃t = ϕ(Wcxxt + Wchht−1 + bc)
ct = it × c̃t + ft × ct−1

xt
ht

σ σ

σ

ot

ϕ

ht−1

ht−1ht−1

ct

ct−1
c̃t

it

ft

ϕ

Forget Gate

xt
ht

σ σ

c̃t

it ot

ϕ ϕ

it = σ(Wixxt + Wihht−1 + bi)
ot = σ(Woxxt + Wohht−1 + bo)

ct

ht−1ht−1

Gates:

σ ft
ct−1

ht−1

ft = σ(Wfxxt + Wfhht−1 + bf)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)
ct = it × c̃t + ft × ct−1

Input Gate

ht

σ

σ
ct−1

ft

ot

ϕ

it = σ(Wixxt + Wihht−1 + bi)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)
ht−1

ht−1

ct = it × c̃t + ft × ct−1

Gates:

ct

σ
it

ht−1

c̃t
ϕxt

Output Gate

xt

σ

σ
ct−1

c̃t

ft

it
ϕ

ot = σ(Woxxt + Wohht−1 + bo)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)
ht−1

ht−1

ct = it × c̃t + ft × ct−1

ht = ot × ϕ(ct)

Gates:

σ
ot

ϕct

ht−1

ht

Long Short Term Memory (LSTM)

xt
ht

σ σ

σ
ct−1

c̃t

ft

it ot

ϕ ϕ

ft = σ(Wfxxt + Wfhht−1 + bf)
it = σ(Wixxt + Wihht−1 + bi)
ot = σ(Woxxt + Wohht−1 + bo)

c̃t = ϕ(Wcxxt + Wchht−1 + bc)

ct

ht−1

ht−1ht−1

ct = it × c̃t + ft × ct−1

ht = ot × ϕ(ct)

Gates:

Vanishing Gradients?

ct = it × c̃t + ft × ct−1

∂ct

∂ct−1
= ft

Recurrent Neural Networks Long Short Term Memory

State maintained by cell value

Gradient set by value of forget gate

State maintained by hidden state feedback

Gradient systemically squashed by sigmoid

ht = σ(Whxxt + Whhht−1 + bh)

Can still vanish, but only if forget gate closes!

Encoder-Decoder Models
• Encode a sequence fully with one model and use its representation to

seed a second model that decodes another sequence

Decoder
LSTM

Decoder
LSTM

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Decoder
LSTM

y0 ̂y1 ̂y2 ̂y3

Encoder-Decoder Models

• e.g., machine translation

Decoder
LSTM

Decoder
LSTM

x2 x3 x4x1

̂y1 ̂y2 ̂y3 ̂y4

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Decoder
LSTM

y0 ̂y1 ̂y2 ̂y3

m’ appelle AntoineJe <START> am AntoineI

am AntoineI <END>

Encoder-Decoder Models
• Input doesn’t need to be text

• e.g., image captioning

Decoder
LSTM

Decoder
LSTM

̂y1 ̂y2 ̂y3 ̂y4

Decoder
LSTM

Decoder
LSTM

y0 ̂y1 ̂y2 ̂y3

<START> on bikeMonkey

on bikeMonkey <END>

Image
Encoder

Photo credit: J Hovenstine Studios

Bidirectionality
• Decoder needs to be unidirectional (can’t know the future…)

• Encoder sequence representation augmented by encoding in both directions

x2 x3 x4x1

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

hfwd
t

hbwd
t

Bidirectionality
• Decoder needs to be unidirectional (can’t know the future…)

• Encoder sequence representation augmented by encoding in both directions

x2 x3 x4x1

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

hfwd
t

hbwd
t

Decoder
LSTM[hfwd

t ; hbwd
t]

Other Resources of Interest

• Gated Recurrent Units (Cho et al., 2014):

- Different approach for maintaining state and avoiding vanishing
gradients

• LSTM: A Search Space Odyssey (Greff et al., 2015)

- Examine 5000 different modifications to LSTMs — none significantly
better than original architecture

• Only basics presented here today! Many offshoots of these techniques!

Part 3: Attentive Neural
Modeling with Transformers

Section Outline

• Background: Long-term Dependency Modeling

• Content: Attention, Self-Attention, Multi-headed Attention, Transformer
Blocks, Transformers

• Demo: Visualizing Transformer Attention

Issue with Recurrent Models
• Multiple steps of state overwriting makes it challenging to learn long-

range dependencies.

• Nearby words should affect each other more than farther ones, but RNNs
make it challenging to learn any long-range interactions

They tuned, discussed for a moment, then struck up a lively
jig. Everyone joined in, turning the courtyard into an even
more chaotic scene, people now dancing in circles, swinging
and spinning in circles, everyone making up their own dance
steps. I felt my feet tapping, my body wanting to move.
Aside from writing, I ’ve always loved dancing .

LAMBADA dataset, 2016

Attentive Encoder-Decoder Models

• Idea: Use the output of
the Decoder LSTM to
compute an attention
over all the outputs of
the encoder LSTM

• Attention is a weighted
average over a set

• Question: what setting
might this be useful in?

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Attention

x2 x3 x4x1 y0

̂y1

Review: LSTMs

xt ht

σ σ

σ
ct−1

c̃t

ft

it ot

ϕ ϕct

ht−1

ht−1ht−1

c̃t = ϕ(Wcxxt + Wchht−1 + bc)
ct = it × c̃t + ft × ct−1

ht = ot × ϕ(ct)

Attention Function

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

he
2 he

3 he
4he

1 hd
1

he
t = encoder output hidden states hd

t = decoder output hidden states

• Set output of decoder as weighted sum of encoder outputs

• Compute similarity between decoder hidden state and encoder output states

Attention Function

he
t = encoder output hidden states hd

t = decoder output hidden state

• Compute similarity between decoder hidden state and encoder output
states

• Compute pairwise score between each encoder hidden state and decoder
hidden state

he
1 hd

1

,()f
he

2 hd
1

,()f
he

3 hd
1

,()fa1 = a2 = a3 =

Attention Formulas
• Pairwise scores can be computed using a variety of functions

Attention Function Formula

Bilinear

Concatenation

Dot Product

Scaled Dot Product

a = heWhd

a = vTϕ(W[he; hd])

a =
(Whe)T(Uhd)

d

a = he ⋅ hd

Attention Function
• Compute pairwise score between each encoder hidden state and decoder

hidden state

• Convert scores to distribution over encoder hidden states and computed
weighted average:

he
1 hd

1

,()f
he

2 hd
1

,()f
he

3 hd
1

,()fa1 = a2 = a3 =

αt =
eat

∑j eaj
h̃d

1 =
T

∑
t=1

αthe
tSoftmax!

Attentive Encoder-Decoder Models

Pass the output of the
attention layer
to your output layer,
which predicts the most
likely output token

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Attention

x2 x3 x4x1 y0

̂y1

h̃d
1

h̃d
1

̂y1

Attentive Encoder-Decoder Models

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Attention

Decoder
LSTM

Attention

x2 x3 x4x1 y0

̂y2

̂y1

̂y1

h̃d
2

Attentive Encoder-Decoder Models

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Attention

Decoder
LSTM

Attention

x2 x3 x4x1 y0

̂y2

̂y1

̂y1

Attention

Decoder
LSTM

̂y3

̂y2

h̃d
3

• Compute new output of decoder as weighted sum of encoder outputs

• Compute pairwise score between each encoder hidden state and decoder
hidden state

• Many possible functions for computing scores (dot product, bilinear, etc.)

• Allows for direct connection between decoder and ALL encoder states

Attention Recap

he
t = encoder output hidden states hd

t = decoder output hidden state

Issue with Recurrent Models
• Recurrent functions can’t be parallelized because previous state needs to

be computed to encode next one

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

Encoder
LSTM

• Ditch recurrence and compute encoder state representations in parallel!

• Compute pairwise score between each encoder hidden state and the
other encoder hidden states

Self-Attention

hℓ
t = encoder hidden state at time step t at layer ℓ

h0
2 h0

3 h0
4h0

1

• Compute pairwise score between each encoder hidden state and the
other encoder hidden states

Self-Attention

hℓ
t = encoder hidden state at time step t at layer ℓ

h0
1 h0

3

,()fa31 =

αst =
east

∑j easj
h̃ℓ

s =
T

∑
t=1

αstVhℓ
tast =

(Whℓ
s)T(Uhℓ

t)

d

hℓ
t hℓ

s

,()fast =

{1, …, t, …, T}
includes s!

Self-attention!

Self-Attention
• Essentially, re-compute representation of state at every time step t using a

weighted average of the representations of the other time steps

h0
2 h0

3 h0
4h0

1

Self
Attention

h̃1
3

αst =
east

∑j easj

h̃ℓ
s =

T

∑
t=1

αstVhℓ
tast =

(Whℓ
s)T(Uhℓ

t)

d

Self-Attention
• Used same notation as before for consistency, but actual notation for self-

attention in transformers use query (Q), keys (K), values (V):

h0
2 h0

3 h0
4h0

1

Self
Attention

h̃1
3

α = softmax(a)

h̃ℓ = WOαVWV

a =
(WQQ)(WKK)

d Q = hℓ
s

K = V = {hℓ
t }T

t=0

Multi-Headed Self-Attention
• Project V, K, Q into H sub-vectors where H is the

number of “heads”

• Compute attention weights separately for each
sub-vector

• Concatenate sub-vectors for each head

h̃ℓ
i = αVWV

i

ai =
(WQ

i Q)(WK
i K)

d/H

h̃ℓ = WO[h̃ℓ
0; . . . ; h̃ℓ

i ; . . . ; h̃ℓ
H]

Vaswani et al., 2017

αi = softmax(ai)

Transformer Block
• Self-attention is the main innovation of the

popular transformer model!

• Each transformer block receives as input the
outputs of the previous layer at every time step

• Each block is composed of a multi-headed
attention, a layer normalisation, a feedforward
network, and another layer normalisation

• There are residual connections before every
normalisation layer

• Layer normalisation + residual connections
don’t add capacity, but make training easier

Vaswani et al., 2017

Full Transformer

• Full transformer encoder is multiple cascaded
transformer blocks

- build up compositional representations of inputs

• No need to propagate state forward in time

- states at each time step computed in parallel!

• Transformer decoder (right) similar to encoder

- second attention layer to compute weighted
average of encoder states before FFN

Vaswani et al., 2017

Full Transformer

• Full transformer encoder is multiple cascaded
transformer blocks

- build up compositional representations of inputs

• No need to propagate state forward in time

- states at each time step computed in parallel!

• Transformer decoder (right) similar to encoder

- second attention layer to compute weighted
average of encoder states before FFN

Vaswani et al., 2017

Full Transformer

• Full transformer encoder is multiple cascaded
transformer blocks

- build up compositional representations of inputs

• No need to propagate state forward in time

- states at each time step computed in parallel!

• Transformer decoder (right) similar to encoder

- second attention layer to compute weighted
average of encoder states before FFN

Recurrent models provided word order information

Does self-attention provide word order information?

Vaswani et al., 2017

Position Embeddings
• Self-attention provides no word order

information

- Computes weighted average over set of
vectors

• Word order is pretty crucial to
understanding language

- How do we fix this?

• Add an additional embedding to the input
word that represents a position in the
sequence

Vaswani et al., 2017

Position Embeddings
• Self-attention provides no word order

information

- Computes weighted average over set of
vectors

• Word order is pretty crucial to
understanding language

- How do we fix this?

• Add an additional embedding to the input
word that represents a position in the
sequence

Vaswani et al., 2017

• Early position embeddings encoded a
sinusoid function that was offset by a phase
shift proportional to sequence position

• In practice, everyone nowadays learns
position embeddings from scratch

Other Resources of Interest

• The Annotated Transformer

- https://nlp.seas.harvard.edu/2018/04/03/attention.html

• The Illustrated Transformer

- https://jalammar.github.io/illustrated-transformer/

• Only basics presented here today! Many modifications to initial
transformers exist

Demo: Attention Visualization

https://colab.research.google.com/drive/1PEHWRHrvxQvYr9NFRC-E_fr3xDq1htCj

Part 4: Modern NLP
Where do we go from here?

Section Outline

• Advances: NLP Successes, Pretraining, Scale

• New Problems: Robustness, Multimodality, Knowledge, Prompting, Ethics

• Demo: Write with Transformers!

Deep Learning Successes in NLP

Pretraining

Transformer Language ModelMassive Text Corpus

Used to

Learn

(Radford et al., 2018, 2019, many others)

Pretraining: Two Approaches

(Radford et al., 2018, 2019, many others)

I really enjoyed the ____ we
watched on Saturday!

I really enjoyed the movie we
watched on ____

(Causal, Left-to-right)
Language Modeling

Masked
Language Modeling

(Devlin et al., 2018; Liu et al., 2020)

#
 P

ar
am

et
er

s
in

 M
od

el

Time

GPT3 - 175B
(July 2020)

Scale

Results

Superhuman results on benchmark datasets!

All top models use transformers!

“All the impressive achievements of deep
learning amount to just curve fitting”

(Pearl, 2018)

Deep learning models exploit biases (Bolukbasi et al., 2016), annotation
artifacts (Gururangan et al., 2018), surface patterns (Li & Gauthier, 2017), etc.

They struggle to learn robust understanding abilities

Robustness

Remaining Problems!

Multimodality
CLIP

https://openai.com/blog/clip/ https://openai.com/blog/dall-e/

Using natural language training
to improve computer vision

Dall-E
Learning to generate images from
natural language descriptions

Structured Knowledge Integration

Su et al., 2020 Wang et al., 2020

Zhang et al., 2019Liu et al., 2019

Unstructured Knowledge Integration

Lewis et al., 2020

Borgeaud et al., 2021Chang et al., 2020

Prompting: A new learning paradigm!

• At very large-scale, language
models exhibit emergent in-
context learning abilities

• Providing examples as input that
depict desired behaviour is
enough for model to replicate it

• No learning required, though
learning can improve this ability

Safety & Ethics
• Learned behaviors of large-scale NLP

models are incredibly opaque

- Language models learn harmful patterns of bias
from large language corpora

• NLP models can reflect and produce
toxic and stereotype-laden content
from seemingly innocuous inputs

• Models can be exploited in open-world
contexts by malicious actors

• How should NLP models be
democratised?

(Warning: examples contain sensitive content)

Sheng et al., 2020

Demo

https://transformer.huggingface.co/doc/gpt2-large

NLP @ EPFL is growing!

• New Natural Language Processing Lab

- Master’s Theses, Semester Projects available every term

• New NLP courses

- Starting Spring 2022: Topics in Natural Language Processing (2 credits)

‣ Paper reading, paper reviewing, discussion

- Starting Spring 2023: Modern Natural Language Processing (6 credits)

‣ Lectures, Assignments, Project

