
Natural Language Generation:
Task

Antoine Bosselut

What is natural language generation?

• Natural language generation
(NLG) is a sub-field of natural
language processing

• Focused on building systems that
automatically produce coherent
and useful written or spoken text
for human consumption

• NLG systems are already
changing the world we live in…

Machine Translation

Dialogue Systems

Summarization

https://chrome.google.com/webstore/detail/gmail-summarization/
(Wang and Cardie, ACL 2013)

Document Summarization E-mail Summarization Meeting Summarization

http://mogren.one/lic/

Data-to-Text Generation

(Dusek et. al., INLG 2019)
(Wiseman and Rush., EMNLP 2017)

(Parikh et al.., EMNLP 2020)

Two children are sitting at a table in a restaurant. The children are
one little girl and one little boy. The little girl is eating a pink frosted
donut with white icing lines on top of it. The girl has blonde hair and
is wearing a green jacket with a black long sleeve shirt underneath.
The little boy is wearing a black zip up jacket and is holding his
finger to his lip but is not eating. A metal napkin dispenser is in
between them at the table. The wall next to them is white brick.
Two adults are on the other side of the short white brick wall. The
room has white circular lights on the ceiling and a large window in
the front of the restaurant. It is daylight outside.

(Krause et. al., CVPR 2017) (Karpathy & Li., CVPR 2015)

Visual Description Generation

Creative Generation

(Ghazvininejad et al.., ACL 2017) (Rashkin et al.., EMNLP 2020)

Stories & Narratives Poetry

All-in-one: ChatGPT

What is natural language generation?

Any task involving text production for human
consumption requires natural language generation

What is natural language generation?

Any task involving text production for human
consumption requires natural language generation

Deep Learning is powering next-gen NLG systems!

Today’s Outline

• Introduction

• Section 1: Formalizing NLG: a simple model and training algorithm

• Section 2: Decoding from NLG models

• Section 3: Evaluating NLG Systems

• Exercise Session: Playing around with our own story generation system

Basics of natural language generation

• Most text generation are autoregressive models — they predict next
tokens based on the values of past tokens

• In autoregressive text generation models, at each time step t, our model

takes in a sequence of tokens of text as input and outputs a new

token,
{𝑦}<𝑡

̂yt

Basics of natural language generation

• In autoregressive text generation models, at each time step t, our model

takes in a sequence of tokens of text as input and outputs a new

token,
{𝑦}<𝑡

̂yt

Basics of natural language generation

• In autoregressive text generation models, at each time step t, our model

takes in a sequence of tokens of text as input and outputs a new

token,
{𝑦}<𝑡

̂yt

yt−4 yt−3 yt−2 yt−1

̂yt

• In autoregressive text generation models, at each time step t, our model

takes in a sequence of tokens of text as input and outputs a new

token,
{𝑦}<𝑡

̂yt

Basics of natural language generation

yt−4 yt−3 yt−2 yt−1

̂yt

̂yt

̂yt+1

̂yt+1

…
̂yt+1

A look at a single step

̂yt

yt−4 yt−3 yt−2 yt−1

• In autoregressive text generation models, at each time step t, our model

takes in a sequence of tokens of text as input and outputs a new

token,
{𝑦}<𝑡

̂yt

Basics: What are we trying to do?
• At each time step t, our model computes a vector of scores for each token

in our vocabulary,

• Then, we compute a probability distribution over using these
scores:

S ∈ ℝ𝑉 :

𝑃 𝑤 ∈ 𝑉

𝑆 = 𝑓({𝑦<𝑡}, 𝜃)

𝑃(𝑦𝑡 = 𝑤 {𝑦<𝑡}) =
exp(𝑆𝑤)

∑𝑤′ ∈ 𝑉 exp(𝑆𝑤′
)

 is your modelf(.)

• At each time step t, our model computes a vector of scores for each token

in our vocabulary,

• Then, we compute a probability distribution over using these
scores:

S ∈ ℝ𝑉 :

𝑃 𝑤 ∈ 𝑉

Basics: What are we trying to do?

𝑃(𝑦𝑡 {𝑦<𝑡}) =
exp(𝑆𝑤)

∑𝑤′ ∈ 𝑉 exp(𝑆𝑤′
)

 is your modelf(.)𝑆 = 𝑓({𝑦<𝑡}, 𝜃)

Basics: What are we trying to do?
• At each time step t, our model computes a vector of scores for each token

in our vocabulary, Then, we compute a probability distribution
over using these scores:

S ∈ ℝ𝑉 . 𝑃
𝑤 ∈ 𝑉

𝑦𝑡−4 𝑦𝑡−3 𝑦𝑡−2 𝑦𝑡−1

S

softmax

𝑃(𝑦𝑡 {𝑦<𝑡})

Basics: What are we trying to do?

• At inference time, our decoding algorithm defines a function to select a token from
this distribution :𝑃

 is your decoding algorithm𝑔(.)̂yt = g(P(yt |{y<t}))

He wanted to go to the Model

restroom

airport
pub
gym
bathroom
game
beach
hospital
doctor

store
grocery

𝑃

Basics: What are we trying to do?
• We train the model to minimize the negative loglikelihood of predicting the next

token in the sequence:

- This is a multi-class classification task where each is a unique class.

- The label at each step is the actual word in the training sequence

- This token is often called the “gold” or “ground truth” token

- This algorithm is often called “teacher forcing”

𝑤 ∈ 𝑉
𝑦∗

𝑡

Sum for the
entire sequence

ℒtℒt = − log P(y*t |{y*<t})

Maximum Likelihood Training (i.e., teacher forcing)

• Trained to generate the next word given a set of preceding words 𝑦∗
𝑡 {𝑦∗}<𝑡

𝑦∗
0

𝑦∗
1

ℒ = − log P(y*1 |y*0)

• Trained to generate the next word given a set of preceding words 𝑦∗
𝑡 {𝑦∗}<𝑡

Maximum Likelihood Training (i.e., teacher forcing)

𝑦∗
0

𝑦∗
1

𝑦∗
1

𝑦∗
2

ℒ = − (log P(y*1 |y*0) + log P(y*2 |y*0 , y*1))

Maximum Likelihood Training (i.e., teacher forcing)

• Trained to generate the next word given a set of preceding words 𝑦∗
𝑡 {𝑦∗}<𝑡

𝑦∗
0

𝑦∗
1

𝑦∗
1

𝑦∗
2

𝑦∗
2

𝑦∗
3

ℒ = − (log P(y*1 |y*0) + log P(y*2 |y*0 , y*1) + log P(y*3 |y*0 , y*1 , y*2))

Maximum Likelihood Training (i.e., teacher forcing)

• Trained to generate the next word given a set of preceding words 𝑦∗
𝑡 {𝑦∗}<𝑡

𝑦∗
0

𝑦∗
1

𝑦∗
1

𝑦∗
2

ℒ = −
4

∑
𝑡=1

log𝑃(𝑦∗
𝑡 {𝑦∗}<𝑡

)

𝑦∗
2 𝑦∗

3

𝑦∗
3 𝑦∗

4

Maximum Likelihood Training (i.e., teacher forcing)

• Trained to generate the next word given a set of preceding words 𝑦∗
𝑡 {𝑦∗}<𝑡

𝑦∗
0 𝑦∗

1 𝑦∗
2 𝑦∗

3 𝑦∗
𝑇−4 𝑦∗

𝑇−3 𝑦∗
𝑇−2 𝑦∗

𝑇−1

…

…

𝑦∗
1 𝑦∗

2 𝑦∗
3 𝑦∗

4 𝑦∗
𝑇−3 𝑦∗

𝑇−2 𝑦∗
𝑇−1

<END>
𝑦∗

𝑇

ℒ = −
T

∑
t=1

log P(y*t |{y*<t})

Text Generation: Takeaways
• Text generation is the foundation of many useful NLP applications (e.g.,

translation, summarisation, dialogue systems)

• In autoregressive NLG, we generate one token a time, using the context and
previous generated tokens as inputs for generating the next token.

• Our model generates a set of scores for every token in the vocabulary, which
we can convert to a probability distribution using the softmax function

• To get a calibrated distribution, we train our model using maximum
likelihood estimation to predict the next token on a dataset of sequences

Natural Language Generation:
Decoding

Antoine Bosselut

• Content - Greedy Decoding Methods: Argmax, Beam Search

• Content - Challenges of Greedy Decoding

• Content - Sampling Methods: Top-k, Top-p

• Advanced - kNN Language Models; Backprop-based decoding

Section Outline

2

Decoding: what is it all about?

3

• At each time step t, our model computes a vector of scores for each token in our

vocabulary,

• Then, we compute a probability distribution over these scores (usually with a
softmax function):

• Our decoding algorithm defines a function to select a token from this
distribution:

S ∈ ℝ𝑉 :

𝑃

𝑆 = 𝑓({𝑦<𝑡})

𝑃(𝑦𝑡 = 𝑤 {𝑦<𝑡}) =
exp(𝑆𝑤)

∑𝑤′ ∈ 𝑉 exp(𝑆𝑤′
)

�̂�𝑡 = 𝑔(𝑃(𝑦𝑡 {𝑦<𝑡}))

 is your modelf(.)

 is your decoding algorithmg(.)

Decoding: what is it all about?

4

• Our decoding algorithm defines a function to select a token from this
distribution

𝑦∗
−2 𝑦∗

−1

<START>
�̂�𝑇−4

�̂�1 �̂�2

<END>

̂yt = g(P(yt |{y*}, ̂y<t))

�̂�1 �̂�2 �̂�𝑇−3 �̂�𝑇−2 �̂�𝑇−1

�̂�𝑇−3 �̂�𝑇−2 �̂�𝑇−1…

…
y*0

�̂�𝑇

Greedy methods: Argmax Decoding

5

• = select the token with the highest probability:g

He wanted to go to the Model

restroom

airport
pub
gym
bathroom
game
beach
hospital
doctor

store
grocery

̂yt = argmax P(yt = w |{y}<t)
w ∈ V

Greedy methods: Argmax Decoding

6

• = select the token with the highest probability:g

̂yt = argmax P(yt = w |{y}<t)
w ∈ V

He wanted to go to the Model

restroom

airport
pub
gym
bathroom
game
beach
hospital
doctor

store
grocery

Select highest
scoring token

What’s a potential problem with argmax decoding?

Issues with argmax decoding

7

• In argmax decoding, we cannot revise prior decisions

Beam search

• in greedy decoding, we cannot go back and
revise previous decisions!

• fundamental idea of beam search: explore
several different hypotheses instead of just a
single one

• keep track of k most probable partial translations
at each decoder step instead of just one!

Better-than-greedy decoding?

• Greedy decoding has no way to undo decisions!
• les pauvres sont démunis (the poor don’t have any money)
• → the ____
• → the poor ____
• → the poor are ____

• Better option: use beam search (a search algorithm) to explore
several hypotheses and select the best one

2/15/1827

the beam size k is usually 5-10

Issues with argmax decoding

8

• In argmax decoding, we cannot revise prior decisions

• Potentially leads to sequences that are
- Ungrammatical

- Unnatural

- Nonsensical

- Incorrect

Beam search

• in greedy decoding, we cannot go back and
revise previous decisions!

• fundamental idea of beam search: explore
several different hypotheses instead of just a
single one

• keep track of k most probable partial translations
at each decoder step instead of just one!

Better-than-greedy decoding?

• Greedy decoding has no way to undo decisions!
• les pauvres sont démunis (the poor don’t have any money)
• → the ____
• → the poor ____
• → the poor are ____

• Better option: use beam search (a search algorithm) to explore
several hypotheses and select the best one

2/15/1827

the beam size k is usually 5-10

Greedy methods: Beam Search

9

• In greedy decoding, we cannot revise prior decisions

• Beam Search: Explore several different hypotheses instead of just one

• Track of the b highest scoring sequences at each decoder step instead of just one

• Score at each step:

• b is called the beam size

j

∑
t=1

log P(̂yt | ̂y1, . . . , ̂yt−1, X)

Beam search

• in greedy decoding, we cannot go back and
revise previous decisions!

• fundamental idea of beam search: explore
several different hypotheses instead of just a
single one

• keep track of k most probable partial translations
at each decoder step instead of just one!

Better-than-greedy decoding?

• Greedy decoding has no way to undo decisions!
• les pauvres sont démunis (the poor don’t have any money)
• → the ____
• → the poor ____
• → the poor are ____

• Better option: use beam search (a search algorithm) to explore
several hypotheses and select the best one

2/15/1827

the beam size k is usually 5-10

10

Greedy methods: Beam Search

13

Beam search decoding: example

Beam size = 2

2/15/1830

<START>

the

a

-1.05

-1.39

log P(̂y1 |y0)

11

Greedy methods: Beam Search

14

Beam search decoding: example

Beam size = 2

2/15/1831

poor

people

poor

person

<START>

the

a

-1.90

-1.54

-2.3

-3.2

2

∑
t=1

log P(̂yt | ̂y0, . . . , ̂yt−1)

12

Greedy methods: Beam Search

15

Beam search decoding: example

Beam size = 2

2/15/1832

poor

people

poor

person

are

don’t

person

but

<START>

the

a

-2.42

-3.12

-2.13

-3.53

3

∑
t=1

log P(̂yt |y0, ̂y1, . . . , ̂yt−1)

13

Greedy methods: Beam Search

16

Beam search decoding: example

Beam size = 2

2/15/1833

poor

people

poor

person

are

don’t

person

but

always

not

have

take
<START>

the

a

-3.82

-3.32

-2.67

-3.61

and so on…
j

∑
t=1

log P(̂yt | ̂y1, . . . , ̂yt−1)

14

Greedy methods: Beam Search

18

Beam search decoding: example

Beam size = 2

2/15/1835

poor

people

poor

person

are

don’t

person

but

always

not

have

take

in

with

any

enough

money

funds

money

funds

<START>

the

a
j

∑
t=1

log P(̂yt | ̂y1, . . . , ̂yt−1)

15

Greedy methods: Beam Search

19

Beam search decoding: example

Beam size = 2

2/15/1836

poor

people

poor

person

are

don’t

person

but

always

not

have

take

in

with

any

enough

money

funds

money

funds

<START>

the

a
j

∑
t=1

log P(̂yt | ̂y1, . . . , ̂yt−1)

• To take best scoring path at every step:

• Maximize likelihood

• or

• Maximize loglikehood of sequence

• or

• Minimize negative log likelihood of sequence

• Use the (negative) (log)likelihood of the full sequence up to this point

Greedy methods: Beam Search

16

17

Greedy methods: Beam Search

16

Beam search decoding: example

Beam size = 2

2/15/1833

poor

people

poor

person

are

don’t

person

but

always

not

have

take
<START>

the

a

-3.82

-3.32

-2.67

-3.61

and so on…

Beam Search

18

• Different hypotheses may produce <END> token at different time steps

- When a hypothesis produces <END>, stop expanding it and place it aside

• Continue beam search until:

- All beams (hypotheses) produce <END> OR

- Hit max decoding limit T

• Select top hypotheses using the normalized likelihood score

- Otherwise shorter hypotheses have higher scores

b

1
T

T

∑
t=1

log P(̂yt | ̂y1, . . . , ̂yt−1, X)

19

What do you think might happen if we
increase the beam size?

They maximise the likelihood of the sequence.
What do maximum likelihood sequences look like?

Why does repetition happen?

20 (Holtzman et. al., ICLR 2020)

Why does repetition happen?

21

Negative loglikelihood
decreases over time!

(Holtzman et. al., ICLR 2020)

Beam search gets repetitive and repetitive

Worse for transformer LMs

(Holtzman et. al., ICLR 2020)

And it keeps going…

23 (Holtzman et. al., ICLR 2020)

Longer it goes, the worse it gets.

Greedy methods get repetitive

24

Context:

Continuation:

In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the fact
that the unicorns spoke perfect English.

The study, published in the Proceedings of the
National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autónoma de México (UNAM) and the
Universidad Nacional Autónoma de México
(UNAM/Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México…

(Holtzman et. al., ICLR 2020)

Greedy methods get repetitive

25

Context:

Continuation:

In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the fact
that the unicorns spoke perfect English.

The study, published in the Proceedings of the
National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autónoma de México (UNAM) and the
Universidad Nacional Autónoma de México
(UNAM/Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México…

Repetition is a big problem in text generation!

(Holtzman et. al., ICLR 2020)

How can we reduce repetition?

26

Simple option:

• Heuristic: Don’t repeat n-grams

More complex:

• Minimize embedding distance between consecutive sentences (Celikyilmaz et al., 2018)

• Doesn’t help with intra-sentence repetition

• Coverage loss (See et al., 2017)

• Prevents attention mechanism from attending to the same words

• Unlikelihood objective (Welleck et al., 2020)

• Penalize generation of already-seen tokens

Are greedy methods reasonable?

27 (Holtzman et. al., ICLR 2020)

Time to get random : Sampling!

28

• Sample a token from the distribution of tokens

• It’s random so you can sample any token!

He wanted
to go to the Model

restroom
grocery
store
airport

pub
gym

bathroom
beach
doctor
hospital

̂yt ∼ P(yt = w |{y}<t)

What’s a potential problem
with sampling?

Decoding: Top-k sampling

29

• Problem: Vanilla sampling makes every token in the vocabulary an option

• Even if most of the probability mass in the distribution is over a limited set of
options, the tail of the distribution could be very long

• Many tokens are probably irrelevant in the current context

• Why are we giving them individually a tiny chance to be selected?

• Why are we giving them as a group a high chance to be selected?

(Fan et al., ACL 2018; Holtzman et al., ACL 2018)

Decoding: Top-k sampling

30

• Problem: Vanilla sampling makes every token in the vocabulary an option

• Even if most of the probability mass in the distribution is over a limited set of
options, the tail of the distribution could be very long

• Many tokens are probably irrelevant in the current context

• Why are we giving them individually a tiny chance to be selected?

• Why are we giving them as a group a high chance to be selected?

• Solution: Top-k sampling

• Only sample from the top k tokens in the probability distribution

(Fan et al., ACL 2018; Holtzman et al., ACL 2018)

Decoding: Top-k sampling

31

• Solution: Top-k sampling

• Only sample from the top k tokens in the probability distribution

• Common values are k = 5, 10, 20 (but it’s up to you!)

• Increase k for more diverse/risky outputs

• Decrease k for more generic/safe outputs
(Fan et al., ACL 2018; Holtzman et al., ACL 2018)

He wanted
to go to the Model

restroom
grocery
store
airport

pub
gym

bathroom
beach
doctor
hospital

Decoding: Top-k sampling

32

• Solution: Top-k sampling

• Only sample from the top k tokens in the probability distribution

• Common values are k = 5, 10, 20 (but it’s up to you!)

• Increase k for more diverse/risky outputs

• Decrease k for more generic/safe outputs
(Fan et al., ACL 2018; Holtzman et al., ACL 2018)

He wanted
to go to the Model

restroom
grocery
store
airport

pub
gym

bathroom
beach
doctor
hospital

What’s a potential problem with top-k sampling?

Top-k sampling can cut off too quickly!

Top-k sampling can also cut off too slowly!

Issues with Top-k sampling

33 (Holtzman et. al., ICLR 2020)

Decoding: Top-p (nucleus) sampling

34

• Problem: The probability distributions we sample from are dynamic

• When the distribution Pt is flatter, a limited k removes many viable options

• When the distribution Pt is peakier, a high k allows for too many options to have

a chance of being selected

• Solution: Top-p sampling

• Sample from all tokens in the top p cumulative probability mass (i.e., where

mass is concentrated)

• Varies k depending on the uniformity of Pt

(Holtzman et. al., ICLR 2020)

Decoding: Top-p (nucleus) sampling

35

• Solution: Top-p sampling

• Sample from all tokens in the top p cumulative probability mass (i.e., where
mass is concentrated)

• Varies k depending on the uniformity of Pt

 P1
t (yt = w |{y}<t) P2

t (yt = w |{y}<t) P3
t (yt = w |{y}<t)

(Holtzman et. al., ICLR 2020)

36

Scaling randomness: Softmax temperature

• Recall: On timestep t, the model computes a prob distribution by applying the softmax
function to a vector of scores

• You can apply a temperature hyperparameter to the softmax to rebalance :

𝑃𝑡
𝑠 ∈ ℝ|𝑉|

𝜏 𝑃𝑡

𝑃𝑡(𝑦𝑡 = 𝑤) =
exp(𝑆𝑤)

∑𝑤′ ∈𝑉 exp(𝑆𝑤′
)

𝑃𝑡(𝑦𝑡 = 𝑤) =
exp(𝑆𝑤/𝜏)

∑𝑤′ ∈𝑉 exp(𝑆𝑤′ /𝜏)

What happens if we increase
the temperature?

37

Scaling randomness: Softmax temperature

• Recall: On timestep t, the model computes a prob distribution by applying the softmax
function to a vector of scores

• You can apply a temperature hyperparameter to the softmax to rebalance :

𝑃𝑡
𝑠 ∈ ℝ|𝑉|

𝜏 𝑃𝑡

𝑃𝑡(𝑦𝑡 = 𝑤) =
exp(𝑆𝑤)

∑𝑤′ ∈𝑉 exp(𝑆𝑤′
)

𝑃𝑡(𝑦𝑡 = 𝑤) =
exp(𝑆𝑤/𝜏)

∑𝑤′ ∈𝑉 exp(𝑆𝑤′ /𝜏)

• Raise the temperature :

• becomes more uniform
• More diverse output (probability

is spread around vocabulary)

𝜏 > 1
𝑃𝑡 What happens if we decrease

the temperature?

38

Scaling randomness: Softmax temperature

• Recall: On timestep t, the model computes a prob distribution by applying the softmax
function to a vector of scores

• You can apply a temperature hyperparameter to the softmax to rebalance :

𝑃𝑡
𝑠 ∈ ℝ|𝑉|

𝜏 𝑃𝑡

𝑃𝑡(𝑦𝑡 = 𝑤) =
exp(𝑆𝑤)

∑𝑤′ ∈𝑉 exp(𝑆𝑤′
)

𝑃𝑡(𝑦𝑡 = 𝑤) =
exp(𝑆𝑤/𝜏)

∑𝑤′ ∈𝑉 exp(𝑆𝑤′ /𝜏)

• Raise the temperature :

• becomes more uniform
• More diverse output (probability

is spread around vocabulary)

𝜏 > 1
𝑃𝑡

• Lower the temperature

• becomes more spiky
• Less diverse output (probability

is concentrated on top words)

𝜏 < 1:
𝑃𝑡

39

What happens if temperature goes to 0?

𝑃𝑡(𝑦𝑡 = 𝑤) =
exp(𝑆𝑤/𝜏)

∑𝑤′ ∈𝑉 exp(𝑆𝑤′
/𝜏)

Improving decoding: re-balancing distributions

40

• Problem: What if I don’t trust how well my model’s distributions are calibrated?

• Don’t rely on ONLY your model’s distribution over tokens

• Solution #1: Re-balance Pt using retrieval from n-gram phrase statistics!

(Khandelwal et. al., ICLR 2020)

Improving decoding: re-balancing distributions

41

• Solution #1: Re-balance Pt using retrieval from n-gram phrase statistics!

• Cache a database of phrases from your training corpus (or some other corpus)

• At decoding time, search for most similar phrases in the database

• Re-balance Pt using induced distribution Pphrase over words that follow these phrases

(Khandelwal et. al., ICLR 2020)

Improving Decoding: Re-ranking

42

• Problem: What if I decode a bad sequence from my model?

• Decode a bunch of sequences

• 10 candidates is a common number, but it’s up to you

• Define a score to approximate quality of sequences and re-rank by this score

• Simplest is to use perplexity!
• Careful! Remember that repetitive methods can generally get high perplexity.

• Re-rankers can score a variety of properties:
• style (Holtzman et al., 2018), discourse (Gabriel et al., 2021), entailment/factuality (Goyal et al.,

2020), logical consistency (Lu et al., 2020), and many more…

• Beware of poorly-calibrated re-rankers

• Can use multiple re-rankers in parallel

Decoding: Takeaways

43

• Decoding is still a challenging problem in natural language generation

• Human language distribution is noisy and doesn’t reflect simple properties (i.e.,
probability maximization)

• Different decoding algorithms can allow us to inject biases that encourage different
properties of coherent natural language generation

• Some of the most impactful advances in NLG of the last few years have come from
simple, but effective, modifications to decoding algorithms

• A lot more work to be done!

[1] Gulcehre et al., On Using Monolingual Corpora in Neural Machine Translation. arXiv 2015

[2] Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arxiv
2016

[3] Venugopalan et al., Improving LSTM-based Video Description with Linguistic Knowledge Mined from Text. EMNLP 2016

[4] Li et al., A Diversity-Promoting Objective Function for Neural Conversation Models. EMNLP 2018

[5] Paulus et al., A Deep Reinforced Model for Abstractive Summarization. ICLR 2018

[6] Celikyilmaz et al., Deep Communicating Agents for Abstractive Summarization. NAACL 2018

[7] Holtzman et al., Learning to Write with Cooperative Discriminators. ACL 2018

[8] Fan et al., Hierarchical Neural Story Generation. ACL 2018

[9] Gabriel et al., Discourse Understanding and Factual Consistency in Abstractive Summarization. EACL 2021

[10] Dathathri et al., Plug and Play Language Models: A Simple Approach to Controlled Text Generation. ICLR 2020

[11] Holtzman et al., The Curious Case of Neural Text Degeneration. ICLR 2020

[12] Khandelwal et al., Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020

[13] Qin et al., Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense
Reasoning. EMNLP 2020

Decoding References

44

Natural Language Generation:
Evaluation

Antoine Bosselut

Greedy methods get repetitive
Context:

Continuation:

In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the fact
that the unicorns spoke perfect English.

The study, published in the Proceedings of the
National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autónoma de México (UNAM) and the
Universidad Nacional Autónoma de México
(UNAM/Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México…

(Holtzman et. al., ICLR 2020)

3

How should we evaluate the
quality of this sequence?

Perplexity: A first try
• Evaluate quality of the model based on the perplexity of the model on

reference sentences

Perplexity: A first try
• Evaluate quality of the model based on the perplexity of the model on

reference sentences

• Why can’t we use perplexity of our generated sentences?

Perplexity: A first try
• Evaluate quality of the model based on the perplexity of the model on

reference sentences

• Why can’t we use perplexity of our generated sentences?

• Decoding algorithms that minimise perplexity (i.e., argmax, beam search)
would be advantaged even if they don’t produce the best text

Perplexity: A first try
• Evaluate quality of the model based on the perplexity of the model on

reference sentences

• Why can’t we use perplexity of our generated sentences?

• Decoding algorithms that minimise perplexity (i.e., argmax, beam search)
would be advantaged even if they don’t produce the best text

• Perplexity of reference sequences tell us how calibrated our model is to
real sequences, but doesn’t say much about the generations it produces

8

How do you think text generation evaluation
differs compared to classification evaluation?

Are you going to Prof.
Bosselut’s CS431 lecture?

Heck yes !

You know it !

Yes !

Yup .

A simple dialogue

Any “right” answer you know could be one of many!

Section Outline

Human EvaluationsContent Overlap Metrics Model-based Metrics

Ref: They walked to the grocery store .

Gen: The woman went to the hardware store .

(Some slides repurposed from Asli Celikyilmaz from EMNLP 2020 tutorial)

Content overlap metrics

• Compute a score that indicates the similarity between generated and gold-
standard (human-written) text

• Fast and efficient and widely used

• Two broad categories:

- N-gram overlap metrics (e.g., BLEU, ROUGE, METEOR, CIDEr, etc.)

- Semantic overlap metrics (e.g., PYRAMID, SPICE, SPIDEr, etc.)

Ref: They walked to the grocery store .

Gen: The woman went to the hardware store .

N-gram overlap metrics
Word overlap based metrics (BLEU, ROUGE, METEOR, CIDEr, etc.)

• They’re not ideal for machine translation, but are correlated with human
judgments of quality

45

Yet automatic metrics such as BLEU
correlate with human judgement

Are you going to Prof.
Bosselut’s CS431 lecture?

Heck yes !

You know it !

Yes !

Yup .

Heck no !

Score:
0.61

0.25

0

0.67

False negative

False positive

A simple failure case

n-gram overlap metrics
have no concept of
semantic relatedness!

A more comprehensive failure analysis

(Liu et al, EMNLP 2016)

N-gram overlap metrics
Word overlap based metrics (BLEU, ROUGE, METEOR, CIDEr, etc.)

• They’re not ideal for machine translation

• They get progressively much worse for tasks that are more open-ended
than machine translation

- Worse for summarization, where extractive methods that copy from documents are preferred

- Much worse for dialogue, which is more open-ended than summarization

N-gram overlap metrics
Word overlap based metrics (BLEU, ROUGE, METEOR, CIDEr, etc.)

• They’re not ideal for machine translation

• They get progressively much worse for tasks that are more open-ended
than machine translation

- Worse for summarization, where extractive methods that copy from documents are preferred

- Much worse for dialogue, which is more open-ended than summarization

- Much, much worse story generation, which is also open-ended, but whose sequence length can
make it seem you’re getting decent scores!

Semantic overlap metrics

SPIDER:
A combination of semantic graph
similarity (SPICE) and n-gram similarity
measure (CIDER), the SPICE metric
yields a more complete quality
evaluation metric.

(Liu et al., 2017)

SPICE:
Semantic propositional image caption
evaluation is an image captioning
metric that initially parses the
reference text to derive an abstract
scene graph representation.

(Anderson et al., 2016).

PYRAMID:
• Incorporates human content

selection variation in summarization
evaluation.

• Identifies Summarization Content
Units (SCU)s to compare
information content in summaries.

(Nenkova, et al., 2007)

Model-based metrics
• Use learned representations of words

and sentences to compute semantic
similarity between generated and
reference texts

• No more n-gram bottleneck because
text units are represented as
embeddings!

• Even though embeddings are
pretrained, distance metrics used to
measure the similarity can be fixed

Model-based metrics: Word distance functions
Vector Similarity:
Embedding-based similarity
for semantic distance between
text

• Embedding Average (Liu et al.,
2016

• Vector Extrema (Liu et al., 2016)
• MEANT (Lo, 2017)
• YISI (Lo, 2019)

Word Mover’s Distance:
Measures the distance
between two sequences
(e.g., sentences, paragraphs,
etc.), using word embedding
similarity matching.

(Kusner et al., 2015; Zhao et al.,
2019)

BERTScore:
Use pre-trained contextual embeddings
from BERT and match words in candidate
and reference sentences by cosine similarity

(Zhang et al., 2020)

Model-based metrics: Beyond word matching

BLEURT:
A regression model based on BERT returns a score
that indicates to what extend the candidate text is
grammatical and conveys the meaning of the
reference text.

(Sellam et.al. 2020)

Sentence Movers Similarity :
Based on Word Movers Distance to evaluate text in a continuous
space using sentence embeddings from recurrent neural network
representations.

(Clark et.al., 2019)

Model-based metrics: LLMs
• Use LLMs to evaluate generation

outputs according to clearly
defined rubric

- G-Eval (Liu et al., 2023)

- LLM-as-a-judge (Zheng et al., 2023)

Auto
CoT

Task Introduction

You will be given one summary written for a news
article. Your task is to rate the summary on one
metric ……

Evaluation Criteria

Coherence (1-5) - the collective quality of all
sentences. We align this dimension with the DUC
quality question of structure and coherence ……

Evaluation Steps

1. Read the news article carefully and identify the
main topic and key points.
2. Read the summary and compare it to the news
article. Check if the summary covers the main topic
and key points of the news article, and if it presents
them in a clear and logical order.
3. Assign a score for coherence on a scale of 1 to
10, where 1 is the lowest and 5 is the highest based
on the Evaluation Criteria.

Input Context
Article: Paul Merson has restarted his row with
Andros Townsend after the Tottenham midfielder
was brought on with only seven minutes remaining
in his team 's 0-0 draw with Burnley on ……

Input Target
Summary: Paul merson was brought on with only
seven minutes remaining in his team 's 0-0 draw
with burnley ……

Evaluation Form (scores ONLY):

- Coherence:

Weighted Summed Score: 2.59

G-Eval

0

0.2

0.4

0.6

1 2 3 4 5

[System]
Please act as an impartial judge and evaluate the quality of the response provided by an
AI assistant to the user question displayed below. Your evaluation should consider factors
such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of
the response. Begin your evaluation by providing a short explanation. Be as objective as
possible. After providing your explanation, please rate the response on a scale of 1 to 10
by strictly following this format: "[[rating]]", for example: "Rating: [[5]]".

[Question]
{question}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

[System]
Please act as an impartial judge and evaluate the quality of the responses provided by two
AI assistants to the user question displayed below. You should choose the assistant that
follows the user’s instructions and answers the user’s question better. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy, depth, creativity,
and level of detail of their responses. Begin your evaluation by comparing the two
responses and provide a short explanation. Avoid any position biases and ensure that the
order in which the responses were presented does not influence your decision. Do not allow
the length of the responses to influence your evaluation. Do not favor certain names of
the assistants. Be as objective as possible. After providing your explanation, output your
final verdict by strictly following this format: "[[A]]" if assistant A is better, "[[B]]"
if assistant B is better, and "[[C]]" for a tie.

[User Question]
{question}

[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]

22

What might be a benefit of model-based
metrics compared to overlap metrics?

Human evaluations

• Automatic metrics fall short of matching human
decisions

• Most important form of evaluation for text
generation systems

- >75% generation papers at ACL 2019 include human evaluations

• Gold standard in developing new automatic metrics

- New automated metrics must correlate well with human
evaluations!

Human evaluations
• Ask humans to evaluate the quality of generated text

• Overall or along some specific dimension:

- fluency

- coherence / consistency

- factuality and correctness

- commonsense

- style / formality

- grammaticality

- typicality

- redundancy

Fo
r

de
ta

ils
 C

el
ik

yi
lm

az
,

C
la

rk
,

G
ao

,
20

20

Human evaluations
• Ask humans to evaluate the quality of generated text

• Overall or along some specific dimension:

- fluency

- coherence / consistency

- factuality and correctness

- commonsense

- style / formality

- grammaticality

- typicality

- redundancy

Fo
r

de
ta

ils
 C

el
ik

yi
lm

az
,

C
la

rk
,

G
ao

,
20

20Note: Don’t compare human
evaluation scores across
differently-conducted studies

Even if they claim to evaluate
the same dimensions!

Human evaluations: case study

����,YQER�[VMXXIR�7XSVMIW ����+48���+IRIVEXIH�7XSVMIW

352037��HY_˳�J�`SMNY�QJWN�
LRJ\JL^N\˳ �T_]^�MSNM˰�HY_�RJM�XY�]ZJ\N�
VS`N]�VNO^˰

6725<��;SXU�aYUN�SX�J�ZJXSL˳�
QJ]ZSXQ�JXM�ōJSVSXQ�aSVMVc�J^�^RN�JS\�
JKY`N�RSW˰�CRN�ZJXSL�[_SLUVc�^_\XNM�
^Y�LYXO_]SYX˳�aJ]X˿^�RN�T_]^˰˰˰˺�
7N�RNJ\M�OYY^]^NZ]�JZZ\YJLRSXQ�
O\YW�KNRSXM˰�;SXU�VNJZ^�_Z�O\YW�^RN�
ōYY\�JXM�M\Na�RS]�]aY\M˳�\NJMc�^Y�
]^\SUN˰�CRN�]SQR^�YO�J�]VSQR^�WJX�SX�J�
]_S^�JMMNM�^Y�;SXU˿]�JV\NJMc�
WY_X^SXQ�LYXO_]SYX˰�8]�^RS]�JXY^RN\�
^\JZ�]N^�Kc�6JXYXMY\O˺�˟˰˰˰ˠ

6725<��˫CRN�DB�BZJLN�B^J^SYX�
NbZVYMNM�aS^R�J_^YWJ^SL�Ŋ\N�SX�
Z\NZJ\J^SYX�OY\�^YXSQR^˿]�X_LVNJ\�
]^\SUN�YX�4J\^R˰�CRS]�S]�`SMNY�O\YW�^RN�
LYX^\YV�LNX^N\�SX]SMN�^RN�BZJLN�
B^J^SYX˫
0˫�ŊQ_\N�aNJ\SXQ�J�WJXSVVJ�NX`NVYZN�
OJVV]�Yň�YO�^RN�KJLU�YO�^RN�]ZJLN�
]^J^SYX˳�MN^YXJ^SXQ�J�X_LVNJ\�MN`SLN˰�
˫$Q�DXGLR�ILOH�LV�PDGH�RI�WKH�VLUHQV��
DQG�VRPH�VFUHDPV������

352037��HY_˳�J�`SMNY�QJWN�
LRJ\JL^N\˳ �T_]^�MSNM˰�HY_�RJM�XY�]ZJ\N�
VS`N]�VNO^˰

b����[SVHW

Human evaluations: case study
%1%>32�1)',%2-'%0�896/

,S[�KVEQQEXMGEPP]�GSVVIGX�MW�XLI�XI\X�SJ�XLI�WXSV]�JVEKQIRX#
+6%11%6

,S[�[IPP�HS�XLI�WIRXIRGIW�MR�XLI�WXSV]�JVEKQIRX�JMX�XSKIXLIV#
'3,)6)2')

,S[�IRNS]EFPI�HS�]SY�JMRH�XLI�WXSV]�JVEKQIRX#
0-/%&-0-8=

,S[�VIPIZERX�MW�XLI�WXSV]�JVEKQIRX�XS�XLI�TVSQTX#
6)0):%2')

�PS[IWX �LMKLIWX� � � � �

Human evaluations: case study
0<0I>=�<4270=820;�CDA:

�)ZEPYEXMRK�1EGLMRI�+IRIVEXIH�8I\X
+48��

���6EXMRK�3RP]�+48���+IRIVEXIH�7XSVMIW

+48��+48��

%1%>32�1)',%2-'%0�896/

Human evaluation: Issues

• Human judgments are regarded as the gold standard

• Human evaluation is slow and expensive

Suppose you can run a human evaluation

Do we have anything to worry about?

Human evaluation: Issues
%1%>32�1)',%2-'%0�896/

8MQI�7TIRX�SR�XLI�8EWO
,91%2,91%2,91%2

����WIG ���WIG ���WIG
ÂŋũĴ¦ĢĿāRł�āóŋłùŭ māÖł māùĢÖł

Human evaluation: Issues
4=6;8B7�C40274AB

4SWX�8EWO�-RXIVZMI[W
+48���,91+48���,91

Ɣ pāāù�ːˏ̖ˑˏ�āƗÖĿťķāŭ�Ŷŋ�óÖķĢðũÖŶā�ũÖŶĢłėŭ

Ɣ !ŋĞāũāłóā�ƒÖŭ�ŶĞā�āÖŭĢāŭŶ�Ŷŋ�ũÖŶā�ĕŋũ�ĞŽĿÖł̖ƒũĢŶŶāł�ŭŶŋũĢāŭ

Ɣ !ŋĞāũāłóā�ƒÖŭ�Öķŭŋ�ŶĞā�ĿŋŭŶ�óĞÖķķāłėĢłė�Ŷŋ�ũÖŶā�ĕŋũ�F�¦̖ˑ�ŭŶŋũĢāŭ

Ɣ �āķāƑÖłóā�ƒÖŭ�ŶĞā�āÖŭĢāŭŶ�Ŷŋ�ũÖŶā�ĕŋũ�F�¦̖ˑ�ŭŶŋũĢāŭ�̒óķāÖũķƘ�łŋŶ�
ĕŋķķŋƒĢłė�ŶĞā�ťũŋĿťŶ̓�

Ɣ zƑāũÖķķ�F�¦̖ˑ�ėāłāũÖŶāù�ŭŶŋũĢāŭ�ƒāũā�ùĢƧóŽķŶ�Ŷŋ�ũÖŶā�
̒ÖƑāũÖėā�ŶĢĿā�ťāũ�ŭŶŋũƘ�ũÖĢŭāù�ĕũŋĿ�˕˘̆˗ŭ�͡�˗˖̆˒ŭ̓

Ɣ �ũāĕāũũāù�Ŷŋ�ũÖŶā�F�¦̖ˑ�Öłù�ĞŽĿÖł̖ƒũĢŶŶāł�ŭŶŋũĢāŭ�ŶŋėāŶĞāũ
̒ðāŶŶāũ�óÖķĢðũÖŶĢŋł̓

Ɣ �ŽėėāŭŶāù�Ŷŋ�āĿťķŋƘ�Ö�ũŽðũĢó

)2+0-7,�8)%',)67

Human evaluation: Issues

• Human judgments are regarded as the
gold standard

• Human evaluation is slow and expensive
(compared to automatic evaluation),
even if your humans try to speed it up!

• Conducting effective human evaluations
is difficult

Humans:
• are inconsistent
• can be illogical
• lose concentration
• misinterpret your question
• can’t always explain why

they feel the way they do
• May try to speed through

your evaluation

Evaluation: Takeaways
• Content overlap metrics provide a good starting point for evaluating the quality of

generated text, but they’re not good enough on their own.

• Model-based metrics can be more correlated with human judgment, but behavior is not
interpretable

• Human judgments are critical.

- Only ones that can directly evaluate factuality – is the model saying correct things?

- But humans are inconsistent!

• In many cases, the best judge of output quality is YOU!

• Look at your model generations. Don’t just rely on numbers!

Concluding Thoughts

• Interacting with natural language generation systems quickly shows their limitations

• Even in tasks with more progress, there are still many improvements ahead

• Evaluation remains a huge challenge.

- We need better ways of automatically evaluating performance of NLG systems

• With the advent of large-scale language models, deep NLG research has been reset

- it’s never been easier to jump in the space!

• One of the most exciting areas of NLP to work in!

