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Introduction

Objectives/Contents

Objective:

= |ntroduce fundamental concepts necessary to use HMMs for PoS tagging

Contents:

= recap example

= HMM models, three basic problems
= Forward-Backward algorithms

= Viterbi algorithm

= Baum-Welch algorithm
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Introduction

Example: PoS tagging with HMM

Sentence to tag: Time flies like an arrow

Example of HMM model:

Q PoS tags: 7= {Adj,Adv,Det,N,V,...}
Qa Transition probabilities:

P(n|adj)=0.1,P(V|N) = 0.3, P(Adv|N) = 0.01, P(adv|v) = 0.005,
P(Det|adv) =0.1,P(Det|v) = 0.3, P(N|pet) = 0.5

(plus all the others, such that stochastic constraints are fulfilled)
A Initial probabilities:

P)(rdj) =0.01, P)(rdv) =0.001, P(Det) = 0.1, P)(N) = 0.2, P/(v) = 0.003 (+...)
v Words: £ = {an, arrow, flies, like, time, ...}
“¢ Emission probabilities:

P(time|N) = 0.1, P(time|ad;j) = 0.01, P(time|v) = 0.05, (+...)
P(flies|n) = 0.1, P(flies|v) = 0.01, P(like|adv) = 0.005, P(like|v) = 0.1, (+...)
P(anpet)=10.3, P(arrow|n) = 0.5 (+..)
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~wn Example: PoS tagging with HMM (cont.)

In this example, 12=3-2-2-1-1 analyzes are possible, for example:

P(time/n flies/V like/adv an/pet arrow/N) =1.13-10~
P(time/nd; flies/\ like/v an/pet arrow/N) = 6.75-10~10

Details of one of such computation:

P(time/N flies/v like/adv an/Det arrow/N)
= Py(N)- P(time|N) - P(V|N) - P(flies|V) - P(Adv|V) - P(like|Adv)
-P(Det|adv)- P(an/Det)- P(N|Det) - P(arrow|N)
= 2e-1-1e-1-3e-1-1e-2-5e-3-5e-3-1e-1-3e-1-5e-1.5e-1
1.13-10°"

The aim is to choose the most probable tagging among the possible ones (e.g. as
provided by the lexicon)
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Markov Models

HMMs —
Definition

Markov model: a discrete-time stochastic process T on 7= {t(1),..., (™} satisfying
the Markov property (limited conditioning):

P(TI'|T17"'3TI'71):P(TI'|TI'7ka"'7TI'71)

k : order of the Markov model

In practice k =1 (bigrams) or 2 (trigrams) rarely 3 or 4 (— learning difficulties)

From a theoretical point of view: every Markov model of order k can be represented as
another Markov model of order 1 (introduce Y; = (T;_i1,..., T}))-

Vocable:
P(Ty,....Ti) = P(T1)-P(T2| T1) - ... P(Ti| Ti—1)

initial probabilities  transition probabilities
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Hidden Markov Models (HMM) A

e What is hidden? ,
1= The model itself (i.e. the state sequence) .

What do we see then?
1= An observation w related to the state (but not the state itself)

Formally: Example for PoS-tagging:
Q a set of states € ={Cq,...,Cn} PoS tags

QA a transition probabilities matrix A:

A,‘j = P( Yt+1 = C/| Yt = C,'), shorten P(C]|C,) P( T,'+1 | T,)
Q an initial probabilities vector

I = P(Y1 = C;) or P(Y; = Cj|"start”), shorten P;(C;) P(Ty)
¢ a set of “observables” ¥ (not necessarily discrete, in general) words

L={oM, ob}

¢ m probability densities on ¥, one for each state (emission probabilities):
i Bi(0) = P(X; = 0| Yy = C;) (for 0 € ¥), shortenP(0|C;) P(w|T;)
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Simple example of HMM

Example: a cheater tossing from two hidden (unfair) coins

HMMs —
Definition

States: coin 1 and coin 2: ¢ ={1,2} 02 N

transition matrix A = { 04 06 }

0.6
0.9 0.1
0.4 0.1
observed: ¥ = {H, T} @ 0o @

emission probabilities: PW(C)
B, =(0.49,0.51) and B, = (0.85,0.15)

initial probabilities 1 = (0.5,0.5)

w5 free parameters: Iy, A1, A21, Bi(H), Bo(H)

Observation: HTTHTTHHTTHTTTHHTHHTTHTTTTHTHHTHTHHTTTH
[ (Hidden) sequence of states: 211211211121112112111211112121121211112]]
J.-C. Chappelier & M. Rajman
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HMM example for PoS tagging

HMMs

Definiti
initial probabilities
transition probabilities
emission probabilities
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HMMs —
Definition

The three basic problems for HMMs A
F

Problems: Given an HMM and an observation sequence w = wj...w,

© given the parameters 0 of the HMM, what is the probability of the observation
sequence: P(w|6)
Application: Language Identification

© given the parameters 6 of the HMM, find the most likely state sequence
T=T,...T, that produces w: argmax P(T|w, 0)
T

Application: PoS Tagging, Speech recognition

© find the parameters that maximize the probability of producing w: argmax P(0|w)
0

Application: Unsupervised learning
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HMMs —
Definition

Remarks:

® 6 = (1LAB)
= (h,is A1ty oo Atmy s Amt s oo, Amm, B1(We ), By (Wa), ..., By (W),
Bo(wy),...,Bo(Wp), ..., Bm(Wy), ..., Bm(wy))
ie. (m=1)+m-(L—=1)+m-(m—1)=m-(m+L—1)—1 free parameters
(because of sum-to-1 contraints), where m = |T7| and L = |£| (in the finite case,
otherwise L stands for the total number of parameters used to represent £)

@ Supervised learning (i.e argmax P(0|w,T)) is easy
0

® WARNING! There is a difference between P(8|w) and P(M|w)!
The model M is supposed to be known here, but its parameters 0:
i.e. the HMM design is already done (number of states, alphabet) only the
parameters are missing.
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Contents

Forward-
Backward

= HMM models, three basic problems
e Forward-Backward algorithms

= Viterbi algorithm

= Baum-Welch algorithm
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Computation of P(w|0)

Forward-
Backward

Computation of P(w|0) is mathematically trivial:

P(w|6) ZPWT|9 =) P(w[T.6)-P(T|6)
T

Practical limitation: complexity is O(nm") ~+ exponential!

Practical computation: forward/backward algorithms —; complexity is O(nm?)
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Forward-
Backward

©EPFL
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Forward-Backward algorithms A

"forward" variable : a;(t) = P(wy,...,w;, T; = t|0) teT

iterative computation: o1 (t') = Bt/(w,+1) Y (04(t)- Ar)
teT

o4 (t) = Bi(ws) -

"backward" variable : Bi(t) = P(Wji1,...,Wn| Ti=1,0)

iterative computation: B;_¢(t) = Y (Bi(t)- Ars- Br(w)))
teT

Bn(t) =1 (by convention, practical considerations)

Computation in O(nm?) — efficient solutions to "first problem":
P(w|@)=Y P(w,T,=16)= ) an(t)

teT teT

P(w[6) =Y ai(t) Vi:1<i<n
teT
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Forward-Backward algorithms (2)

Forward-
Backward

There exist also

"forward-backward" variable : y(t) = P(T; = t|w, 0)

(w,T;=1]6) ai(t) - Bi(t)

P _
vi(t) = P(w0) Y a(t) Bi(t)

veT

w useful later for the Baum-Welch algorithm
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Contents

Tagger: Viterbi
algorithm

= HMM models, three basic problems
= Forward-Backward algorithms

= Viterbi algorithm

= Baum-Welch algorithm
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Viterbi algorithm (1)

Efficient solution to the "second problem": find the most likely sequence of states T
(knowing w and the parameters 0) : argmax P(T|w, 0)
T

Tagger: Viterbi

oentm = maximize (in T) P(T,w|8).
"The" lattice = temporal unfolding of all possible walks through the Markov chain

States

Sentence

J.-C. Chappelier & M. Rajman
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Viterbi algorithm (2)

Tagger: Viterbi Let pl(t): max P(T1777—/—177—I:t7w177wlle)

algorithm 19000 7—,',1

We are looking for max pn(t)
teT

It can be shown (exercise) that p;(t) = max [P(t|t’, 0)P(w;|t,0)p;_¢(t)

from which comes the following algorithm:

forallt ¢ T do
p1(t) = It - B(wy)
for i from 2 to ndo
forall t€ T do
* pi(t) = By(w;) - maxy (At - pi1(t))
e mark one of the transitions from t’ to t where the maximum is reached

reconstruct backwards (from T,) the best path following the marked transitions
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Viterbi algorithm: example

Tagger: Viterbi
algorithm
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Contents

Learning:

Baum-Welch

algorithm
= HMM models, three basic problems
= Forward-Backward algorithms
= Viterbi algorithm

= Baum-Welch algorithm
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Expectation-Maximization A

F

Learning: Our goal: maximize P(0|w)
Baum-Welch
algorithm

i Maximum-likelihood estimation of 6 — maximization of P(w|0)
To achieve it: Expectation-Maximization (EM) algorithm

General formulation of EM: given
» observed data w = wy...wp

> a parameterized probability distribution P(T,w|0) where

» T=T,..Th are unobserved data
> 0 are the parameters of the model

determine 6 that maximizes P(w|0) by convergence of iterative computation of the
series 8 that maximizes (in 8) Et [Iog P(T,w|6)|w,00~")
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Expectation-Maximization (2)

To do so, define the auxilary function
Learning:
Baum-Welch

algorithm Q(6,0") =Er [log P(T,w|6)|w, 0] = Z P(T|w,8")log P(T,w|8)
T

as it can be shown (see Appendix) that

Q(6,0') > Q(6',8') = P(w|6) > P(w|8")

This is the fundamental principle of EM:

if we already have an estimation 8’ of the parameters and we find another parameter
configuration @ for which the first inequality (on Q) holds,

then w is most probable with model 6 rather than with model 6’.
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Expectation-Maximization (3) A

Learning:
Baum-Welch
algorithm

EM algorithm:

» Expectation Step: Compute Q(8,6)

» Maximization Step: Compute 8*") = argmax Q(8,6()
0

in other words:

1. Choose 8 (and set i = 0)
2. Find 8" which maximizes Y1 P(T|w,8")log P(T,w|0(*")
3. Set i« i+ 1 and go back to (2) unless some convergence test is fulfilled
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Baum-Weilch Algorithm

The Baum-Welch Algorithm is an EM algorithm for estimating HMM parameters.

Learning: It's an answer to the "third problem" (unsupervised learning).
Baum-Welch
algorithm

The goal is therefore to find

argmaxz P(T|w,8")log P(T,w|6) = argmaxz P(T,w|68")log P(T,w|6)
7] T (7} T

since P(w|@") does not depend on 6.

What is log P(T,w|0)?

n n
log P(T,w|0) =log P/(Ty) + Z log P(T;|Ti_1) + Z log P(w;| T})
i=2 i=1

e II's maximization (see Appendix) leads to estimates Tt AAtﬂ and B/t(\w)

©EPFL
J.-C. Chappelier & M. Rajman

E PF L A Primer on Hidden Markov Models — 23 /36



Baum-Welch Algorithm: effective computation

Learning: How do we compute these (re)estimates?

algorithm

Let xi(t,t') = P(Ti =1, Tjy1 = t'|W,6)

xi is easy to compute with "forward" and "backward" variables:

2(tt) = oi(t) - A - By (Wii1) - Bisa (1)
TTY Y 0i(n) Ao Bo(Wish) - B (7)

teTveT

Notice: ¥(t) =} xi(t,t) forall1<i<n
teT
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Effective reestimation formulas

I =mn(t)
Learning:
Baum-Welch
algorithm o
Y u(tt)
N =1
Att/ - n
Y 7i(t)
i=1
n
(t n
i:1Zs.t.%( ) Z?’i(t) Ow;,w
573 Wi=w i—
Bt(W) = n —= =1 o
Yu Y wud
i=1 i=1

with 8, ,» = 1 if w=w' and 0 otherwise.
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Baum-Welch Algorithm A

FF

Learning:
Baum-Welch
algorithm

1. Let 8 be an initial parameter set

2. Compute iteratively o,  and then yand ¥

3. Compute 8" with reestimation formulas

4. If ‘6(”1) - 9“)‘ >¢,goto(2) [or another weaker stop test]

WARNING!
The algorithm converges but only towards a local maximum of E [log P(T,w|0)]
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Other models

Beyond HMMs, what’s next?

» Conditional Random Fields (CRF)
» Bayesian Networks
» Graphical Models

Conclusion

However, the three important main aspects remain:

1. efficient computations using dynamic programming
2. Viterbi-like search algorithm (“belief propagation”)
3. Unsupervised learning with Expectation-Maximization

©EPFL
J.-C. Chappelier & M. Rajman

“PEL

A Primer on Hidden Markov Models — 27 /36



Keypoints

- HMMSs definitions, their applications

= Three basic problems for HMMs

Conclusion

= Algorithms needed to solve these problems:

» Forward-Backward
(know what it solves and why it does exist, but not the mathematical details)

> Viterbi
(know everything and be able to do/apply it)

» Baum-Welch
(be aware of its existence and properties, but not the implementation details)
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Conclusion

APPENDIX
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EM: Justification of the maximization of the auxilary

function Q
Finding 6 that maximises P(w|@) can be done by maximizing (in 8) Q(8,8’) (for any
given 0'):
P(w| P(w,t/0)
Conclusion | P 9 —l P 6/ :l =
og P(w]0) ~ log P(|8') = log 5 |o’ Y Bwie)
P(w,t|0)
= log}" P(t|w, 6’
2P0 5 g7)
Jensen P(w,t|0)
> P 0')log————~
> Et [Iog P(T,w|0)|w, 0’] —ET [Iog P(T,w|6")|w, 6’]
> Q(e,0')—-Q(e’,8")
Therefore:

Q(6,8') > Q(6',8") = log P(W|0) > log P(w|8') = P(w|0) > P(w|0’)
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Baum-Welch algorithm: derivation of the formulas
Goal: Maximize

Q(6,0") = log P(T,w|6) = IogP,(T1)—|—ZIogP Til Ty +Z|ogP wi| T)
i=2 i=1

Conclusion Q(6,6') consists therefore of 3 terms:

Q((1.A.B),8') = Q/(1,8') + Qu(A, 8') + Qg(B, 8')

Let’'s compute one of these:
Q(,8") = ZP (T,w|68)log P/(T4)

= Z Z (T1,wW|0)-P(Ty,...T,| Ty, W, 0") -log P/(T)
Ty To,...,Th

= Y P(Ti=t,w|0')-logP(t) Y. P(To,.... TalTi,W,0")
teT T2, T

= ZP(T1:t,w|6')-IogI,

©EPFL teT
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Similarly we have:

n
Qa(A,0)=) Y Y P(Ti1=tTi=t,wl@)logAy

i=2teTteT

5(B,0') = Z Z P(T; = t,w|0")log By(w;)
i=1teT
Conclusion
Therefore Q is a sum of three independent terms (e.g. Q; does not depend on A nor
on B)

therefore the maximisation over 0 is achieved by the three terms separately, i.e.
maximizing Q/(1,0") over I, Q4(A, 8") over A and Qg(B, 8') over B separately.

Notice that all these three functions are sums (over i) of functions of the form:

m
X) = Z Y log X
j=1

m
and all the above three functions have to be maximized under the constraint ) x; = 1.
J=1
"To be accurate: for B; the constraint is Z Bi(w) = 1. This changes the formulas a bit, but not the
o wel
LG Crapater M. Fan essence of the computation.
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Maximizing

m
X) =), ¥ logx,
=

under the constraint

Conclusion

s

I
N

X =1
]

can be achieved using Lagrange multipliers, i.e. looking at

m
9(x) —A ZX=Z yjlogx;—-x))
j=1
Solving this by 2 g(x) = 0, we find that A =
Putting this back in the constraint we find:
y.
X =
LY
©EPFL j:1

J.-C. Chappelier & M. Rajman

E PF L A Primer on Hidden Markov Models — 34 /36



Summarizing the obtained results, we have the following reestimation formulas (where
the max. is reached):

T _ P(T1 = t,W‘e/) _ P(T1 = t,W|0/)
" Y P(M=twe)  Pw]e)
Conclusion teT
n

ZP(T 1=tTi=t,w|@)

=2
Z ,1—tT—TW|9/)
teT

P(Ti1=tTi=t,w|6)

= [0

||
n

n
Y P(Tiq =t,w|6)
i—2
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and:

n
Conclusion L !/
L PTI=EWO) 5 b7 — 1 wlo') s,
Bi(w) = =
Y P(Ti=t.w|0') Y P(T;=t,w|@')
i=1 i=

with &, » =1 if w = w’ and 0 otherwise.
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