Tagger: Viterbi

A Primer on Hidden Markov Models

J.-C. Chappelier & M. Rajman

Laboratoire d'Intelligence Artificielle Faculté I&C

Objectives/Contents

Objective:

Introduce fundamental concepts necessary to use HMMs for PoS tagging

Contents:

- recap example
- HMM models, three basic problems
- ➡ Forward-Backward algorithms
- Viterbi algorithm
- Baum-Welch algorithm

Example: PoS tagging with HMM

Sentence to tag: Time flies like an arrow

Example of HMM model:

- \square PoS tags: $\mathcal{T} = \{ Adj, Adv, Det, N, V, ... \}$

Transition probabilities:
$$P(N|Adj) = 0.1, P(V|N) = 0.3, P(Adv|N) = 0.01, P(Adv|V) = 0.005,$$

$$P(\text{Det}|\text{Adv}) = 0.1, P(\text{Det}|\text{V}) = 0.3, P(\text{N}|\text{Det}) = 0.5$$

(plus all the others, such that stochastic constraints are fulfilled)

$$P_I(Adj) = 0.01, P_I(Adv) = 0.001, P_I(Det) = 0.1, P_I(N) = 0.2, P_I(V) = 0.003$$

- $\mathcal{L} = \{an, arrow, flies, like, time, ...\}$

Initial probabilities:

(+...)

P(time|N) = 0.1, P(time|Adj) = 0.01, P(time|V) = 0.05,

P(flies|N) = 0.1, P(flies|V) = 0.01, P(flies|V) = 0.01, P(flies|N) = 0.005, P(flies|V) = 0.1, (+...)P(an|Det) = 0.3, P(arrow|N) = 0.5

Example: PoS tagging with HMM (cont.)

In this example, $12 = 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1$ analyzes are possible, for example:

$$P(time/N flies/V like/Adv an/Det arrow/N) = 1.13 \cdot 10^{-11}$$

 $P(time/Adj flies/N like/V an/Det arrow/N) = 6.75 \cdot 10^{-10}$

Details of one of such computation:

```
P(time/N flies/V like/Adv an/Det arrow/N)
   = P_{I}(N) \cdot P(time|N) \cdot P(V|N) \cdot P(flies|V) \cdot P(Adv|V) \cdot P(like|Adv)
         \cdot P(\text{Det}|\text{Adv}) \cdot P(an/\text{Det}) \cdot P(\text{N}|\text{Det}) \cdot P(arrow|\text{N})
   = 2e-1 \cdot 1e-1 \cdot 3e-1 \cdot 1e-2 \cdot 5e-3 \cdot 5e-3 \cdot 1e-1 \cdot 3e-1 \cdot 5e-1 \cdot 5e-1
   = 1.13 \cdot 10^{-11}
```

The aim is to choose the most probable tagging among the possible ones (e.g. as provided by the lexicon)

HMMs -Definition

Markov Models

Markov model: a discrete-time stochastic process **T** on $\mathfrak{T} = \{t^{(1)}, ..., t^{(m)}\}$ satisfying the *Markov property* (limited conditioning):

$$P(T_i|T_1,...,T_{i-1}) = P(T_i|T_{i-k},...,T_{i-1})$$

k: order of the Markov model

In practice k = 1 (bigrams) or 2 (trigrams) rarely 3 or 4 $(\rightarrow$ learning difficulties)

From a theoretical point of view: every Markov model of order k can be represented as another Markov model of order 1 (introduce $Y_i = (T_{i-k+1}, ..., T_i)$).

Vocable:

$$P(T_1,...,T_i) = P(T_1) \cdot P(T_2|T_1) \cdot ... \cdot P(T_i|T_{i-1})$$

initial probabilities transition probabilities

HMMs -

Definition

Hidden Markov Models (HMM)

What is hidden?

The model itself (i.e. the state sequence)

What do we see then?

An *observation* w related to the state (but not the state itself)

Formally:

 \square a set of states $\mathcal{C} = \{C_1, ..., C_m\}$

a transition probabilities matrix A:

 $A_{ii} = P(Y_{t+1} = C_i | Y_t = C_i)$, shorten $P(C_i | C_i)$

an initial probabilities vector *I*:

 $I_i = P(Y_1 = C_i)$ or $P(Y_t = C_i|$ "start"), shorten $P_i(C_i)$

a set of "observables" Σ (not necessarily discrete, in general)

 $B_i(o) = P(X_t = o | Y_t = C_i)$ (for $o \in \Sigma$), shorten $P(o | C_i)$

 $\mathcal{L} = \{ \omega^{(1)}, ..., \omega^{(L)} \}$ m probability densities on Σ , one for each state (*emission probabilities*):

Example for PoS-tagging:

PoS tags $\mathcal{T} = \{t^{(1)}, ..., t^{(m)}\}$ $P(T_{i+1}|T_i)$

> $P(T_1)$ words

HMMs -Definition

Simple example of HMM

Example: a cheater tossing from two hidden (unfair) coins

States: coin 1 and coin 2: $\mathcal{C} = \{1,2\}$

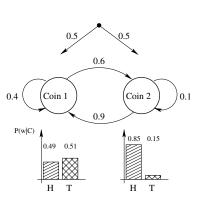
transition matrix
$$\mathbf{A} = \begin{bmatrix} 0.4 & 0.6 \\ 0.9 & 0.1 \end{bmatrix}$$

observed: $\Sigma = \{H, T\}$

emission probabilities:

$$\mathbf{B_1} = (0.49, 0.51)$$
 and $\mathbf{B_2} = (0.85, 0.15)$

initial probabilities $\mathbf{I} = (0.5, 0.5)$



■ 5 free parameters: I_1 , A_{11} , A_{21} , B_1 (H), B_2 (H)

Observation: HTTHTTHHTTHTTHHTHHTHTTTTHHHTHHTHHTTTH

traduction

HMMs – Definition

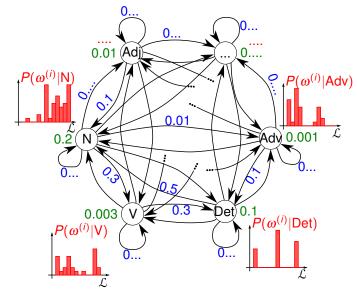
Forward-Backwar

Tagger: Vite

Learning: Baum-Wel algorithm

Conclusi

HMM example for PoS tagging



initial probabilities transition probabilities emission probabilities

The three basic problems for HMMs

Problems: Given an HMM and an observation sequence $\mathbf{w} = w_1 \dots w_n$

- given the parameters $\boldsymbol{\theta}$ of the HMM, what is the probability of the observation $P(\mathbf{w}|\boldsymbol{\theta})$ sequence: Application: Language Identification
- \Rightarrow given the parameters θ of the HMM, find the most likely state sequence $\mathbf{T} = T_1 \dots T_n$ that produces **w**: $\operatorname{argmax} P(\mathbf{T}|\mathbf{w}, \boldsymbol{\theta})$
 - Application: PoS Tagging, Speech recognition
- find the parameters that maximize the probability of producing w: $\operatorname{argmax} P(\boldsymbol{\theta}|\mathbf{w})$ Application: Unsupervised learning

Conclusio

Remarks:

- ① $\boldsymbol{\theta} = (\mathbf{I}, \mathbf{A}, \mathbf{B})$ $= (I_1, ..., I_m, A_{11}, ..., A_{1m}, ..., A_{mn}, B_1(w_1), B_1(w_2), ..., B_1(w_L),$ $B_2(w_1), ..., B_2(w_L), ..., B_m(w_1), ..., B_m(w_L))$ i.e. $(m-1) + m \cdot (L-1) + m \cdot (m-1) = m \cdot (m+L-1) - 1$ free parameters
 - (because of sum-to-1 contraints), where $m = |\mathfrak{T}|$ and $L = |\mathcal{L}|$ (in the finite case, otherwise L stands for the total number of parameters used to represent \mathcal{L})
- 2 Supervised learning (i.e $\underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta}|\mathbf{w}, \mathbf{T})$) is easy
- ③ WARNING! There is a difference between $P(\theta|\mathbf{w})$ and $P(\mathcal{M}|\mathbf{w})$! The model \mathcal{M} is supposed to be known here, but its parameters θ : i.e. the HMM *design* is already done (number of states, alphabet) only the parameters are missing.

Contents

Forward-Backward

Tagger: Viterbi

Learning: Baum-Weld

Conclusio

- → HMM models, three basic problems
- Forward-Backward algorithms
- → Viterbi algorithm
- → Baum-Welch algorithm

Computation of $P(\mathbf{w}|\boldsymbol{\theta})$

Forward-Backward

Computation of $P(\mathbf{w}|\boldsymbol{\theta})$ is mathematically trivial:

$$P(\mathbf{w}|\boldsymbol{\theta}) = \sum_{\mathbf{T}} P(\mathbf{w}, \mathbf{T}|\boldsymbol{\theta}) = \sum_{\mathbf{T}} P(\mathbf{w}|\mathbf{T}, \boldsymbol{\theta}) \cdot P(\mathbf{T}|\boldsymbol{\theta})$$

<u>Practical limitation</u>: complexity is $O(nm^n)$ → exponential!

Practical computation: forward/backward algorithms \rightarrow complexity is $O(nm^2)$

 $t \in \mathfrak{T}$

"forward" variable :
$$\alpha_i(t) = P(w_1,...,w_i,T_i=t|\boldsymbol{\theta})$$

iterative computation:
$$\alpha_{i+1}(t') = B_{t'}(w_{i+1}) \cdot \sum_{t \in \mathfrak{T}} (\alpha_i(t) \cdot A_{tt'})$$

$$\alpha_1(t) = B_t(w_1) \cdot I_t$$

Computation in
$$O(nm^2) \rightarrow$$
 efficient solutions to "first problem":

$$P(\mathbf{w}|\boldsymbol{\theta}) = \sum_{t \in \mathcal{T}} P(\mathbf{w}, T_n = t|\boldsymbol{\theta}) = \sum_{t \in \mathcal{T}} \alpha_n(t)$$

"backward" variable : $\beta_i(t) = P(w_{i+1}, ..., w_n | T_i = t, \boldsymbol{\theta})$ iterative computation: $\beta_{i-1}(t') = \sum_{j} (\beta_i(t) \cdot A_{t't} \cdot B_t(w_i))$ $\beta_n(t) = 1$ (by convention, practical considerations)

 $\forall i: 1 < i < n$

Forward-Backward

Forward-Backward algorithms (2)

Forward-Backward

Tagger: Viterlagorithm

Learning: Baum-Welch

aum-Welch lgorithm There exist also

"forward-backward" variable : $\gamma_i(t) = P(T_i = t | \mathbf{w}, \boldsymbol{\theta})$

$$\gamma_i(t) = \frac{P(\mathbf{w}, T_i = t | \boldsymbol{\theta})}{P(\mathbf{w} | \boldsymbol{\theta})} = \frac{\alpha_i(t) \cdot \beta_i(t)}{\sum_{i \in \mathcal{I}} \alpha_i(t') \cdot \beta_i(t')}$$

useful later for the Baum-Welch algorithm

roduction

Contents

Forward-

Tagger: Viterbi

algorithm Learning:

Jondiasion

- → HMM models, three basic problems
- Forward-Backward algorithms
- Viterbi algorithm
- → Baum-Welch algorithm

mtroduc

Forwar

Backward
Tagger: Viterbi

algorithm

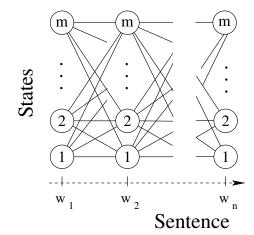
Learning:

Conclusi

Viterbi algorithm (1)

Efficient solution to the "second problem": find the most likely sequence of states **T** (knowing **w** and the parameters $\boldsymbol{\theta}$): $\underset{\mathbf{T}}{\operatorname{argmax}} P(\mathbf{T}|\mathbf{w}, \boldsymbol{\theta})$

- \Rightarrow maximize (in **T**) $P(\mathbf{T}, \mathbf{w} | \boldsymbol{\theta})$.
- "The" lattice region temporal unfolding of all possible walks through the Markov chain



We are looking for $\max_{t \in \Upsilon} \rho_n(t)$

It can be shown (exercise) that $\rho_i(t) = \max_{t'} \left| P(t|t', \boldsymbol{\theta}) P(w_i|t, \boldsymbol{\theta}) \rho_{i-1}(t') \right|$

from which comes the following algorithm:

for all $t \in \mathfrak{T}$ do

$$\rho_1(t) = I_t \cdot B_t(w_1)$$

for i from 2 to n do

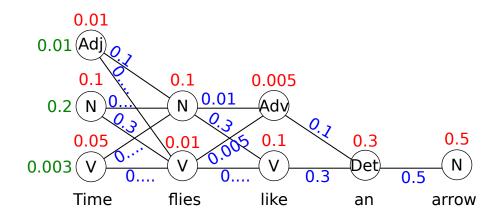
- for all $t \in \mathfrak{T}$ do
 - $\bullet \ \rho_i(t) = B_t(w_i) \cdot \max_{t'} (A_{t't} \cdot \rho_{i-1}(t'))$
 - mark one of the transitions from t' to t where the maximum is reached

reconstruct backwards (from T_n) the best path following the marked transitions

Tagger: Viterbi

algorithm

algorithm



Contents

Learning: Baum-Welch algorithm

- → HMM models, three basic problems
- ➡ Forward-Backward algorithms
- → Viterbi algorithm
- Baum-Welch algorithm

Expectation-Maximization

Tagger: Vit

Learning: Baum-Welch algorithm

Conclusio

Our goal: maximize $P(\boldsymbol{\theta}|\mathbf{w})$

 \blacksquare Maximum-likelihood estimation of $oldsymbol{ heta}$

 \rightarrow maximization of $P(\mathbf{w}|\boldsymbol{\theta})$

To achieve it: Expectation-Maximization (EM) algorithm

General formulation of EM: given

- ightharpoonup observed data $\mathbf{w} = w_1 ... w_n$
- ightharpoonup a parameterized probability distribution $P(\mathbf{T}, \mathbf{w} | \boldsymbol{\theta})$ where
 - ightharpoonup $T = T_1 ... T_n$ are unobserved data
 - \bullet are the parameters of the model

determine $\boldsymbol{\theta}$ that maximizes $P(\mathbf{w}|\boldsymbol{\theta})$ by convergence of iterative computation of the series $\boldsymbol{\theta}^{(i)}$ that maximizes (in $\boldsymbol{\theta}$) $\mathbf{E}_{\mathbf{T}} \left[\log P(\mathbf{T}, \mathbf{w}|\boldsymbol{\theta}) | \mathbf{w}, \boldsymbol{\theta}^{(i-1)} \right]$

Expectation-Maximization (2)

Learning: Baum-Welch algorithm

To do so, define the auxiliary function

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}') = \mathbf{E}_{\mathsf{T}} \left[\log P(\mathsf{T}, \mathbf{w} | \boldsymbol{\theta}) | \mathbf{w}, \boldsymbol{\theta}' \right] = \sum_{\mathsf{T}} P(\mathsf{T} | \mathbf{w}, \boldsymbol{\theta}') \log P(\mathsf{T}, \mathbf{w} | \boldsymbol{\theta})$$

as it can be shown (see Appendix) that

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}') > Q(\boldsymbol{\theta}', \boldsymbol{\theta}') \Rightarrow P(\mathbf{w}|\boldsymbol{\theta}) > P(\mathbf{w}|\boldsymbol{\theta}')$$

This is the fundamental principle of EM:

if we already have an estimation θ' of the parameters and we find another parameter configuration θ for which the first inequality (on Q) holds,

then w is most probable with model θ rather than with model θ' .

Learning: Baum-Welch algorithm

EM algorithm:

- **Expectation Step: Compute** $Q(\theta, \theta^{(i)})$
- Maximization Step: Compute $\boldsymbol{\theta}^{(i+1)} = \operatorname{argmax} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)})$

in other words:

- 1. Choose $\boldsymbol{\theta}^{(0)}$ (and set i=0)
- 2. Find $\theta^{(i+1)}$ which maximizes $\sum_{\mathbf{T}} P(\mathbf{T}|\mathbf{w}, \boldsymbol{\theta}^{(i)}) \log P(\mathbf{T}, \mathbf{w}|\boldsymbol{\theta}^{(i+1)})$
- 3. Set $i \leftarrow i+1$ and go back to (2) unless some convergence test is fulfilled

Baum-Welch Algorithm

The Baum-Welch Algorithm is an EM algorithm for estimating HMM parameters. It's an answer to the "third problem" (unsupervised learning).

The goal is therefore to find

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{\mathbf{T}} P(\mathbf{T}|\mathbf{w}, \boldsymbol{\theta}') \log P(\mathbf{T}, \mathbf{w}|\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{\mathbf{T}} P(\mathbf{T}, \mathbf{w}|\boldsymbol{\theta}') \log P(\mathbf{T}, \mathbf{w}|\boldsymbol{\theta})$$

since $P(\mathbf{w}|\boldsymbol{\theta}')$ does not depend on $\boldsymbol{\theta}$.

What is $\log P(\mathbf{T}, \mathbf{w} | \boldsymbol{\theta})$?

$$\log P(\mathbf{T}, \mathbf{w}|\boldsymbol{\theta}) = \log P_i(T_1) + \sum_{i=2}^n \log P(T_i|T_{i-1}) + \sum_{i=1}^n \log P(w_i|T_i)$$

It's maximization (see Appendix) leads to estimates \hat{l}_t , $\widehat{A}_{tt'}$ and $\widehat{B}_t(w)$.

Learning: Baum-Welch algorithm

Baum-Welch Algorithm: effective computation

Learning:

Baum-Welch algorithm

How do we compute these (re)estimates?

Let
$$\chi_i(t,t') = P(T_i = t, T_{i+1} = t' | \mathbf{w}, \boldsymbol{\theta})$$

 χ_i is easy to compute with "forward" and "backward" variables:

$$\chi_i(t,t') = \frac{\alpha_i(t) \cdot A_{tt'} \cdot B_{t'}(w_{i+1}) \cdot \beta_{i+1}(t')}{\sum_{\tau \in \mathbb{T}} \sum_{\tau' \in \mathbb{T}} \alpha_i(\tau) \cdot A_{\tau\tau'} \cdot B_{\tau'}(w_{i+1}) \cdot \beta_{i+1}(\tau')}$$

Notice:
$$\gamma_i(t) = \sum_{t' \in \Upsilon} \chi_i(t, t')$$

for all 1 < i < n

Learning: Baum-Welch algorithm

Effective reestimation formulas

 $\widehat{I}_t = \gamma_1(t)$

 $\widehat{A}_{tt'} = \frac{\sum_{i=1}^{n-1} \chi_i(t,t')}{\sum_{i=1}^{n-1} \gamma_i(t)}$

$$\widehat{B_t(w)} = \frac{\sum_{\substack{i=1 \text{s.t.} \\ W_i = w}}^n \gamma_i(t)}{\sum_{i=1}^n \gamma_i(t)} = \frac{\sum_{i=1}^n \gamma_i(t) \, \delta_{w_i,w}}{\sum_{i=1}^n \gamma_i(t)}$$

with $\delta_{w \ w'} = 1$ if w = w' and 0 otherwise.

Definition

Forward-Backward

Learning: Baum-Welch algorithm

Conclusi

Baum-Welch Algorithm

- 1. Let $\boldsymbol{\theta}^{(0)}$ be an initial parameter set
- 2. Compute iteratively α , β and then γ and χ
- 3. Compute $\boldsymbol{\theta}^{(t+1)}$ with reestimation formulas
- **4**. If $|\boldsymbol{\theta}^{(t+1)} \boldsymbol{\theta}^{(t)}| > \varepsilon$, go to (2)

[or another weaker stop test]

WARNING!

The algorithm converges but only towards a <u>local</u> maximum of $\mathbf{E} [\log P(\mathbf{T}, \mathbf{w} | \boldsymbol{\theta})]$

roduction

HMMs -

Forward-Backward

Tagger: Vite algorithm

Learning Baum-We algorithm

Conclusion

Other models

Beyond HMMs, what's next?

- Conditional Random Fields (CRF)
- Bayesian Networks
- Graphical Models

However, the three important main aspects remain:

- 1. efficient computations using dynamic programming
- 2. Viterbi-like search algorithm ("belief propagation")
- 3. Unsupervised learning with Expectation-Maximization

Conclusion

Keypoints

- → HMMs definitions, their applications
- → Three basic problems for HMMs
- Algorithms needed to solve these problems:
 - Forward-Backward (know what it solves and why it does exist, but not the mathematical details)
 - Viterbi (know everything and be able to do/apply it)
 - Baum-Welch (be aware of its existence and properties, but not the implementation details)

References

Conclusion

[1] L. R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceedings of the IEEE, vol. 77, No. 2, 1989.

[2] C. D. Manning, H. Schütze, Foundations of Statistical Natural Language Processing, MIT, 1999.

[3] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum-likelihood from incomplete data via the EM algorithm, Journal of Royal Statistical Society B, 1977.

[4] H. Bourlard et al., *Traitement de la parole*, 2000; pp. 179-200, 202-214, 232-260.

.....

Definition

Backward

Tagger: Viterbi algorithm

Conclusion

APPENDIX

Conclusion

EM: Justification of the maximization of the auxiliary function *Q*

Finding θ that maximises $P(\mathbf{w}|\theta)$ can be done by maximizing (in θ) $Q(\theta, \theta')$ (for any given θ'):

$$\begin{split} \log P(\mathbf{w}|\boldsymbol{\theta}) - \log P(\mathbf{w}|\boldsymbol{\theta}') &= \log \frac{P(\mathbf{w}|\boldsymbol{\theta})}{P(\mathbf{w}|\boldsymbol{\theta}')} = \log \sum_{\mathbf{t}} \frac{P(\mathbf{w},\mathbf{t}|\boldsymbol{\theta})}{P(\mathbf{w}|\boldsymbol{\theta}')} \\ &= \log \sum_{\mathbf{t}} P(\mathbf{t}|\mathbf{w},\boldsymbol{\theta}') \frac{P(\mathbf{w},\mathbf{t}|\boldsymbol{\theta})}{P(\mathbf{w},\mathbf{t}|\boldsymbol{\theta}')} \\ \text{Jensen} &\geq \sum_{\mathbf{t}} P(\mathbf{t}|\mathbf{w},\boldsymbol{\theta}') \log \frac{P(\mathbf{w},\mathbf{t}|\boldsymbol{\theta})}{P(\mathbf{w},\mathbf{t}|\boldsymbol{\theta}')} \\ &\geq \sum_{\mathbf{t}} \left[\log P(\mathbf{T},\mathbf{w}|\boldsymbol{\theta})|\mathbf{w},\boldsymbol{\theta}' \right] - \mathbf{E}_{\mathbf{T}} \left[\log P(\mathbf{T},\mathbf{w}|\boldsymbol{\theta}')|\mathbf{w},\boldsymbol{\theta}' \right] \\ &\geq Q(\boldsymbol{\theta},\boldsymbol{\theta}') - Q(\boldsymbol{\theta}',\boldsymbol{\theta}') \end{split}$$

Therefore:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}') > Q(\boldsymbol{\theta}', \boldsymbol{\theta}') \Rightarrow \log P(\mathbf{w}|\boldsymbol{\theta}) > \log P(\mathbf{w}|\boldsymbol{\theta}') \Rightarrow P(\mathbf{w}|\boldsymbol{\theta}) > P(\mathbf{w}|\boldsymbol{\theta}')$$

Baum-Welch algorithm: derivation of the formulas Goal: Maximize

$$\widehat{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}') = \log P(\mathbf{T}, \mathbf{w}|\boldsymbol{\theta}) = \log P_{l}(T_{1}) + \sum_{i=2}^{n} \log P(T_{i}|T_{i-1}) + \sum_{i=1}^{n} \log P(w_{i}|T_{i})$$

 $\widehat{Q}(\theta, \theta')$ consists therefore of 3 terms:

$$\widehat{Q}((\mathsf{I},\mathsf{A},\mathsf{B}),\boldsymbol{ heta}') = Q_l(\mathsf{I},\boldsymbol{ heta}') + Q_A(\mathsf{A},\boldsymbol{ heta}') + Q_B(\mathsf{B},\boldsymbol{ heta}')$$

Let's compute one of these:

$$Q_{l}(\mathbf{I}, \mathbf{\theta}') = \sum_{\mathbf{T}} P(\mathbf{T}, \mathbf{w}|\mathbf{\theta}') \log P_{l}(T_{1})$$

$$= \sum_{T_{1}} \sum_{T_{2},...,T_{n}} P(T_{1}, \mathbf{w}|\mathbf{\theta}') \cdot P(T_{2}, ..., T_{n}|T_{1}, \mathbf{w}, \mathbf{\theta}') \cdot \log P_{l}(T_{1})$$

$$= \sum_{t \in \mathcal{T}} P(T_{1} = t, \mathbf{w}|\mathbf{\theta}') \cdot \log P_{l}(t) \underbrace{\sum_{T_{2},...,T_{n}} P(T_{2}, ..., T_{n}|T_{1}, \mathbf{w}, \mathbf{\theta}')}_{=1}$$

$$= \sum_{t \in \mathcal{T}} P(T_{1} = t, \mathbf{w}|\mathbf{\theta}') \cdot \log I_{t}$$

Conclusion

Conclusion

Similarly we have:

on **B**)

Therefore \widehat{Q} is a sum of three **independent** terms (e.g. Q_I does not depend on **A** nor

 $Q_{A}(\mathbf{A}, \boldsymbol{\theta}') = \sum_{i=2}^{n} \sum_{t \in \mathcal{T}} \sum_{t \in \mathcal{T}} P(T_{i-1} = t, T_i = t', \mathbf{w} | \boldsymbol{\theta}') \log A_{tt'}$

 $Q_B(\mathbf{B}, \boldsymbol{\theta}') = \sum_{i=1}^n \sum_{t=0}^n P(T_i = t, \mathbf{w} | \boldsymbol{\theta}') \log B_t(w_i)$

therefore the maximisation over θ is achieved by the three terms separately, i.e. maximizing $Q_l(\mathbf{I}, \boldsymbol{\theta}')$ over \mathbf{I} , $Q_A(\mathbf{A}, \boldsymbol{\theta}')$ over \mathbf{A} and $Q_B(\mathbf{B}, \boldsymbol{\theta}')$ over \mathbf{B} separately.

Notice that all these three functions are sums (over *i*) of functions of the form:

 $f(\mathbf{x}) = \sum_{i=1}^{m} y_i \log x_i$

 $w \in \mathcal{L}$

C. Chappelier & M. Rajman essence of the computation.

and all the above three functions have to be maximized under the constraint $\sum_{i=1}^{n} x_i = 1.1$ ¹To be accurate: for \mathbf{B}_t the constraint is $\sum B_t(w) = 1$. This changes the formulas a bit, but not the

Maximizing

under the constraint

Conclusion

Solving this by $\frac{\partial}{\partial x}g(x)=0$, we find that $\lambda=\frac{y_j}{x_i}$. Putting this back in the constraint we find:

can be achieved using Lagrange multipliers, i.e. looking at

 $f(\mathbf{x}) = \sum_{i=1}^{m} y_i \log x_i$

 $\sum_{i=1}^{m} x_j = 1$

 $g(\mathbf{x}) = f(\mathbf{x}) - \lambda \cdot \sum_{i=1}^{m} x_j = \sum_{i=1}^{m} (y_i \log x_j - \lambda \cdot x_j)$

 $x_j = \frac{y_j}{\sum_{i=1}^m y_j}$

Conclusion

Summarizing the obtained results, we have the following reestimation formulas (where the max. is reached):

$$\widehat{I}_t = \frac{P(T_1 = t, \mathbf{w} | \boldsymbol{\theta}')}{\sum_{t' \in \mathcal{T}} P(T_1 = t', \mathbf{w} | \boldsymbol{\theta}')} = \frac{P(T_1 = t, \mathbf{w} | \boldsymbol{\theta}')}{P(\mathbf{w} | \boldsymbol{\theta}')}$$

$$\widehat{A}_{tt'} = \frac{\sum_{i=2}^{n} P(T_{i-1} = t, T_i = t', \mathbf{w} | \boldsymbol{\theta}')}{\sum_{i=2}^{n} \sum_{\tau \in \mathcal{T}} P(T_{i-1} = t, T_i = \tau, \mathbf{w} | \boldsymbol{\theta}')}$$

$$= \frac{\sum_{i=2}^{n} P(T_{i-1} = t, T_i = t', \mathbf{w} | \boldsymbol{\theta}')}{\sum_{i=2}^{n} P(T_{i-1} = t, \mathbf{w} | \boldsymbol{\theta}')}$$

Conclusion

and:

$$\widehat{B_t(\mathbf{w})} = \frac{\sum_{i=1 \text{s.t.} \atop w_i = \mathbf{w}}^n P(T_i = t, \mathbf{w} | \boldsymbol{\theta}')}{\sum_{i=1}^n P(T_i = t, \mathbf{w} | \boldsymbol{\theta}')} = \frac{\sum_{i=1}^n P(T_i = t, \mathbf{w} | \boldsymbol{\theta}') \, \delta_{w_i, w}}{\sum_{i=1}^n P(T_i = t, \mathbf{w} | \boldsymbol{\theta}')}$$

with $\delta_{w \ w'} = 1$ if w = w' and 0 otherwise.