Words, tokens, n-grams and Language Models

J.-C. Chappelier
Laboratoire d'Intelligence Artificielle
Faculté I\&C

Objectives of this lecture

\Rightarrow Where to start NLP processing chain from? Words?
$\Rightarrow n$-gram models
\Leftrightarrow Example usage of n-grams: Language Identification
\Leftrightarrow Out-of-Vocabulary forms

Lexical level

What is the input of a NLP system? Where to start from?
it's a sequence of characters
Characters however seems a bit too low-level to play the role of the atomic constituents of the language
lack of generalization
What should then be the atomic entities of NLP?
What should basic core information be related to?
This is a difficult question! (Still open?)
(phonological words? syntactic words? concepts?)
However, a general agreement is to focus on words.
It's precisely the role of the lexical level:
first to identify, and then associate required information with the words.

What is a word??

The notion of "correct word" is difficult to define, especially out of context/application:
"credit card", "San Fransisco", "co-teaching": 1 or 2 words?
Is "John's" from "John's car" one single word?
Or are they two words? Is "'s" a word?
Similarly, what about "I'm", "isn't", ...?
And it's even worse for languages having aglutinative morphology (e.g. German), or languages without explicit delimiter (e.g. Thai).

And what about: "I called SC to ask for an app.", or "CU"
definition of words depends on the application/context
Should carefully think about it!
If your goal is to build a lexicon as portable/universal as possible: choose minimal tokens and let a properly designed tokenizer (or even further modules) glue these tokens in a way that fits each specific application.

Word vs. tokens

We'd prefere to stick to definition 1 (and conceptually separate words from tokens). Anyway: don't bother so much about an (impossible?) absolute definition but be aware of the problem!

Practice: M. O'Connel payed \$12,000 (V.T.A. not included) with his credit card.

Key points

1. The notion of words is (inherently?) ambiguous and depends on the application.
2. Tokens are more useful in practice but may also depend on the application
! !! be sure all your NLP modules do indeed share the same definition of what tokens are!!!
(otherwise, it's really a way to shoot yourself in the foot)

Language models

Back to start:

What is the input of a NLP system? Where to start from?
it's a sequence of characters \longrightarrow sequence(s?) of tokens \longrightarrow sequence(s?) of words
How to choose among sequences (of characters/tokens)?
How to decide which sequence is the best (e.g. comparing two)?

Examples:

- language identification: rendez-vous vs. gestalt (n-grams of characters)
- spelling-error correction: errro vs. error
- collocations: real car wheel vs. real estate market (n-grams of characters)
(n-grams of tokens)
- tokenization: fullcapacitytocarryon (coming from OCR) vs. full capacity to carry on (n-grams of characters / n-grams of tokens)

One approach: probabilities: n-grams of characters and n-grams of tokens (for such an approach: "the best" = the more probable)

Notes:

- all modern neural NLP techniques actually focus on n-grams, estimating various kinds of related probabilities
- probabilization of n-grams of tokens a.k.a. "language model"

Probabilities: Notation (abuse)

$X, Y, \ldots, X_{1}, \ldots$: (discreate) random variables
$x, y, \ldots, x_{1}, \ldots$: values $\quad x \in X$: values for X
$P(x)$: same as $P(X=x)$ when X is clear by context
$P(X)$: distribution (set of all $P(x)$ for all $x \in X$)
(Note: for continuous variables, $P(X)$ denotes in fact the density function $\mathrm{d} P(X)$)
$P(x \mid y)$: same as $P(X=x \mid Y=y)$ when X and Y are clear by context
$P(X \mid y)$: distribution knowing $Y=y$ (set of all $P(X=x \mid Y=y)$ for all $x \in X$)
$P(X \mid Y)$: shouldn't make much sense
$P(x, y)$: same as $P(X=x, Y=y)$ when X and Y are clear by context, typically $P\left(X_{1}=x, X_{2}=y\right)$

Notice: $P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)$ is truly the same as $P\left(X_{2}=x_{2}, X_{1}=x_{1}\right)$, whereas $P\left(x_{1}, x_{2}\right)$ is not the same as $P\left(x_{2}, x_{1}\right)$:

$$
P\left(x_{1}, x_{2}\right) \text { is } P\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \text {, whereas } P\left(x_{2}, x_{1}\right) \text { is } P\left(X_{1}=x_{2}, X_{2}=x_{1}\right)!
$$

Additivity (a.k.a. marginalization): $(M<N)$

$$
P\left(x_{1}, \ldots, x_{M}\right)=\sum_{x_{M+1} \in X_{M+1}, \ldots, x_{N} \in X_{N}} P\left(x_{1}, \ldots, x_{M}, x_{M+1}, \ldots, x_{N}\right)
$$

Conditional probabilities: (for $P\left(y_{1}, \ldots, y_{N}\right) \neq 0$)

$$
P\left(x_{1}, \ldots, x_{M} \mid y_{1}, \ldots, y_{N}\right)=\frac{P\left(x_{1}, \ldots, x_{M}, y_{1}, \ldots, y_{N}\right)}{P\left(y_{1}, \ldots, y_{N}\right)}
$$

Note: thus $\sum_{x_{1} \in X_{1}, \ldots, x_{M} \in X_{M}} P\left(x_{1}, \ldots, x_{M} \mid y_{1}, \ldots, y_{N}\right)=1$
Chain rule:

$$
P\left(x_{1} \cdots x_{N}\right)=P\left(x_{1}\right) \cdot \prod_{i=2}^{N} P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)
$$

Bayes' rule: (for $P(x) \neq 0$ and $P(y) \neq 0)$

$$
P(x \mid y)=\frac{P(x) \cdot P(y \mid x)}{P(y)}
$$

n-gram approach

Consider a sequence of $x \mathrm{~s}$ (characters, tokens, ...)
Make use of ($n-1$)-order Markov assumption: $P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid x_{i-n+1} \cdots x_{i-1}\right)$ to end up with (S : size of the input):

$$
P\left(x_{1} \cdots x_{S}\right)=P\left(x_{1} \cdots x_{n}\right) \cdot \prod_{i=n+1}^{S} P\left(x_{i} \mid x_{i-n+1} \cdots x_{i-1}\right)
$$

Use this value as a score to compare sequences ($n \geq 2$):

$$
\frac{\prod_{i=1}^{S-n+1} P\left(x_{i} \cdots x_{i+n-1}\right)}{\prod_{i=2}^{S-n+1} P\left(x_{i} \cdots x_{i+n-2}\right)}
$$

Reminder: $P\left(x_{i} \cdots x_{i+n-2}\right)=\sum_{x} P\left(x_{i} \cdots x_{i+n-2} x\right)$

$$
P\left(x_{i} \cdots x_{i+n-1}\right) \text { : paramaters estimated on some corpus }
$$

$$
\begin{aligned}
P(e r r r o) & =P(e r r) \cdot P(r \mid r r) \cdot P(o \mid r r) \\
& =P(e r r) \cdot \frac{P(r r r)}{P(r r)} \cdot \frac{P(r r o)}{P(r r)} \\
P(e r r o r) & =P(e r r) \cdot \frac{P(r r o)}{P(r r)} \cdot \frac{P(r o r)}{P(r o)}
\end{aligned}
$$

Parameters: trigrams probabilities: $P($ aaa $), \ldots, P(e r r), \ldots, P(r r o), \ldots, P(z z z)$
Bigrams probabilities are simply sums of trigrams' : $P(r o)=\sum_{x} P(r o x)$

Caveat!

Don't compare probabilities of sequences of different sizes!!
$P\left(x_{1}, \ldots, x_{M}\right)$ and $P\left(x_{1}, \ldots, x_{N}\right)$ usually DO NOT COMPARE $(M \neq N)$
They are in two different probabilized spaces:

$$
\sum_{x_{1} \in X_{1}, \ldots, x_{N} \in X_{N}} P\left(x_{1}, \ldots, x_{N}\right)=1
$$

for a given N : in fact, $P\left(x_{1}, \ldots, x_{N}\right)$ is a $P\left(x_{1}, \ldots, x_{N} \mid\right.$ size $\left.=N\right)$
For instance, do not compare P (real estate), P (real estate market) and P (real estate market increase)

Then how compare them if we have to?
put (all of them) in a broader model in which they make sense
Note: we here made the assumption that $P\left(x_{1}, \ldots, x_{\max (N, M)}\right)$ is not a decent "broader" model
(for instance that $P($ real estate market $)=\sum_{w} P($ real estate market w) is of no interest for the considered application [since: the shorter, the higher])

Where do the values $P\left(x_{i} \cdots x_{i+n-1}\right)$ come from?
from a learning corpus

Simplest estimate: maximum-likelihood estimate:

$$
\widehat{P}\left(x_{1} \cdots x_{n}\right)=\frac{\#\left(x_{1} \cdots x_{n}\right)}{N_{n}}
$$

where $\#(y)$ is the count of y (= the number of times y appears in the corpus) and N_{n} is the size of the corpus = the total number of n-grams in that corpus:

$$
N_{n}=\sum_{x_{1}, \ldots, x_{n}} \#\left(x_{1} \cdots x_{n}\right)
$$

Better estimates (1/2)

Maximum-likelihood estimates (MLE) are the simplest ones but suffer from unseen events:
unseen rare events have a 0 frequency, thus a 0 probability MLE (orfitting)
That could be OK in domains where the number of zeros isn't huge (e.g. maybe for categorization),
but is not for language modeling.
Reminder: power laws

which 0 are "real zeros" and which ones are simply unseen, but possible, events? Difficult question!

Better estimates (2/2)

Several approaches to better estimate unseen rare events (a.k.a smoothing methods):

- introduce a "prior" (a.k.a. "additive smoothing")
leads to special cases known as Lidstone smoothing, Laplace smoothing or add-one smoothing
- add a new word (e.g. "<UNKNOWN>") and estimate (held-out) probabilities accordingly
- backoff smoothing: fall-back on smaller n : increase the chance to observe events by decreasing the context-size
- interpolation: mix n-grams with ($n-1$)-grams, ($n-2$)-grams, etc. the mixing coefficients can be fixed or adaptative (learned on held-out data)
- Good-Turing smoothing: use the count of hapaxes (events seen only once) to improve estimates of probabilities of unseen events
- Kneser-Ney smoothing: considered as the most-effective for n-grams; it's a mixture of discounting and interpolation
let's in-depth explain the first one

Additive smoothing (properly explained; 1/2)

n-grams is a probabilistic model, the parameters θ of which are the probabilities of the various n-grams (i.e. θ is a constrained vector of dimension $D=|X|^{n}$, with $|X|$ the number of possible values for X)
A partially Bayesian view on learning θ from a corpus \mathscr{C} leads to estimating θ as:

$$
\widehat{\theta}=\underset{\theta}{\operatorname{argmax}} P(\theta \mid \mathscr{C})=\underset{\theta}{\operatorname{argmax}} P(\theta) P(\mathscr{C} \mid \theta)
$$

$P(\mathscr{C} \mid \theta)$ (the likelihood of a corpus, represented here as a "bag-of- n-grams", i.e. by its n-grams counts) follows a multinomial law (the parameters of which are θ).
It's conjugate prior is the Dirichlet distribution; so let's model $P(\theta)$ by a Dirichlet distribution (it's indeed a probability density function on probabilities!):

$$
P(\theta \mid \alpha)=\Gamma\left(\sum_{i=1}^{D} \alpha_{i}\right) \cdot \prod_{i=1}^{D} \frac{\theta_{i} \alpha_{i}-1}{\Gamma\left(\alpha_{i}\right)} \quad\left(\alpha_{i}>0\right)
$$

where $\Gamma()$ represents the "gamma function".

Additive smoothing (properly explained; 2/2)

Thus the posterior $P(\theta \mid \mathscr{C})$ is itself a Dirichlet distribution, which is maximized (MAP) for

$$
\widehat{P}\left(x_{1} \cdots x_{n}\right)=\frac{\#\left(x_{1} \cdots x_{n}\right)+\alpha_{x_{1}, \ldots, x_{n}}-1}{N_{n}+\left(\sum_{x_{1}, \ldots, x_{n}} \alpha_{x_{1}, \ldots, x_{n}}\right)-D}
$$

In a "more Bayesian view", however, the expected value of $\theta_{x_{1} \cdots x_{n}}=P\left(x_{1} \cdots x_{n}\right)$ (under posterior Dirichlet distribution) is:

$$
\widetilde{P}\left(x_{1} \cdots x_{n}\right)=E_{\theta \mid \mathscr{C}, \alpha}\left[\theta_{i}\right]=\frac{\#\left(x_{1} \cdots x_{n}\right)+\alpha_{x_{1}, \ldots, x_{n}}}{N_{n}+\sum_{x_{1}, \ldots, x_{n}} \alpha_{x_{1}, \ldots, x_{n}}}
$$

and moreover (predictive distribution):

$$
P\left(x_{1} \cdots x_{n} \mid \mathscr{C}, \alpha\right)=E_{\theta \mid \mathscr{C}, \alpha}[\underbrace{P\left(x_{1} \cdots x_{n} \mid \theta\right)}_{=\theta_{x_{1}} \cdots x_{n}}]=\widetilde{P}\left(x_{1} \cdots x_{n}\right)=\frac{\#\left(x_{1} \cdots x_{n}\right)+\alpha_{x_{1}, \ldots, x_{n}}}{N_{n}+\sum_{x_{1}, \ldots, x_{n}} \alpha_{x_{1}, \ldots, x_{n}}}
$$

Example (bigrams among two letters)

$$
\begin{aligned}
X=\{\mathrm{a}, \mathrm{~b}\}, n=2 \longrightarrow D= & |X|^{n}=2^{2}=4: \\
& \theta=(P(\mathrm{ab}), P(\mathrm{ba}), P(\mathrm{aa}), P(\mathrm{bb}))
\end{aligned}
$$

Consider $\mathscr{C}=$ ababaabababaabab $=\{(\mathrm{ab}, 7),(\mathrm{ba}, 6),(\mathrm{aa}, 2),(\mathrm{bb}, 0)\}$
MLE:

$$
P(\mathrm{ab})=\frac{7}{15} \quad P(\mathrm{ba})=\frac{6}{15} \quad P(\mathrm{aa})=\frac{2}{15} \quad P(\mathrm{~b} \mathrm{~b})=0
$$

Predictive distribution with uniform Dirichlet prior $\alpha_{i}=0.5$ for all $i \in\{\mathrm{ab}, \mathrm{ba}$, aa, b. $\}$:

$$
P(\mathrm{ab} \mid \mathscr{C}, \alpha)=\frac{7.5}{17} \quad P(\mathrm{ba} \mid \mathscr{C}, \alpha)=\frac{6.5}{17} \quad P(\mathrm{aa} \mid \mathscr{C}, \alpha)=\frac{2.5}{17} \quad P(\mathrm{~b} \mathrm{~b} \mid \mathscr{C}, \alpha)=\frac{0.5}{17}
$$

Additive smoothing = Dirichlet prior

So additive smoothing techniques

$$
P\left(x_{1} \cdots x_{n} \mid \mathscr{C}, \alpha\right)=\frac{\#\left(x_{1} \cdots x_{n}\right)+\alpha_{x_{1}, \ldots, x_{n}}}{N_{n}+\sum_{x_{1}, \ldots, x_{n}} \alpha_{x_{1}, \ldots, x_{n}}}
$$

result from a Bayesian predictive distribution with a Dirichlet-prior assumption:

- MLE : " $\alpha_{i}=0$ " (not possible in this framework)
- $\alpha_{i}=1$: "Laplace smoothing", a.k.a. "add-one smoothing"
don't use that for linguistic corpora (see next slides and reference [7])
- $\alpha_{i}<1$: makes sense with power laws (a priori θ lies "close to the borders")

But what does α_{i} actually represent (intuitively)?
The components of α represent the relative importance of each component of θ. For α_{i} smaller than 1, the distribution tends to "sharply increase" (in other words, to discretize) to the maximum α_{i} values.
More details in appendix for those interested.

Introduction

Examples of α parameter in 2D

For $D=2$ (i.e. only 1 free parameter; $n=1,|X|=2$)

Introduction

For $D=3$ (i.e. 2 free parameters; $n=1,|X|=3$)

$$
\alpha=(1,1,1)
$$

Examples of α parameter in 3D

Example usage of n-gram: Language Identification

Example of tasks making use of language models: Language Identification

Goal: identification of the source language
Input: some textual document (or part of it)
Output: (name of the) language it was (mostly) written in
Two main techniques (which are combined):

- most frequent words
- Decomposition into n-grams of characters

Example: for trigrams

$$
\text { dribble } \rightarrow \text { (dri,rib,ibb,bbl,ble) }
$$

In practice: n varies from 2 to 4
From reference corpora, estimate the likelihood of a word to belong to a given language.
Example for trigrams:

$$
P(\text { dribble } \mid L)=P(\mathrm{dri} \mid L) \cdot \frac{P(\mathrm{rib} \mid L)}{P(\mathrm{ri} \mid L)} \cdot \ldots \cdot \frac{P(\mathrm{ble} \mid L)}{P(\mathrm{bl} \mid L)}
$$

Trigrams for French, English, German and Spanish: $\simeq 90 \%$ discrimination accuracy

Likelihood vs. Posterior probability

In the former slide, why make use of the likelihood $P(w \mid L)$ rather than the posterior probability $P(L \mid w)$?

- They are both hard to accurately model without any further assumptions (w belongs to a huge set!)
but no further simplification can be made on $P(L \mid w)$: w is fixed (and there is nothing to gain "simplifying" L !)
On the other hand, $P(w \mid L)$ can be further simplified making assumptions on w
- Using the Bayes' rule:

$$
\underset{L}{\operatorname{argmax}} P(L \mid w)=\underset{L}{\operatorname{argmax}} P(w \mid L) \cdot P(L)
$$

introduces the likelihood anyway! (which could then be simplified further)

- If you can accurately estimate $P(L)$, sure, make use of it!
- Otherwise, the least biaised hypothesis (maximum entropy) is to a priori assume that all languages are all equally possible: maximizing posterior probability is then the same as maximizing likelihood

Out of Vocabulary forms

Out of Vocabulary (OoV) forms matter: they occur quite frequently (e.g. $\simeq 10 \%$ in newspapers)

What do they consist of?

- spelling errors: foget, summmary, usqge, ...
- neologisms: Internetization, Tacherism, ...
(and may also later become part of the lexicon)
- borrowings: gestalt, rendez-vous, ...
shall be included in the lexicon at some point
- forms difficult to exhaustively lexicalize: (numbers,) proper names, abbreviations, ...
ad-hoc regular expressions, Named-Entity Recognition

Output:

- all correct words (\in lexicon) within threshold from input string

Spelling error correction

Input:

- incorrect form (OoV),
- lexicon,
- threshold (e.g. max. distance)

Two approaches:
correct forms: lexicon
metric:
edit distance
correct forms: lexicon

In this lecture:

- only a few words about the probabilistic approach

Probabilistic

lexicon or any string
(ordered with probabilities)
probability

Probabilistic approach summarized (1/2)

Make (one more time!) use of n-grams (both levels, characters and tokens, are combined)
w : OoV token to be corrected (input string)
c: candidate correction, out of $\mathscr{C}(w)$, set of possible candidates for w

$$
\underset{c \in \mathscr{C}(w)}{\operatorname{argmax}} P(c \mid w)=\underset{c \in \mathscr{C}(w)}{\operatorname{argmax}} P(c) \cdot P(w \mid c)
$$

$P(c)$: language model (n-grams of tokens/words; $n=1$ here, but could easily be extended to neighboring tokens ($n>1$ then))
$P(w \mid c)$: error model: edit distance and/or m-grams of characters

Probabilistic approach summarized (2/2)

A usual (unexplicit?) assumption is that $P(w \mid c)$ is many orders of magnitude higher for smaller edit distance (than for higher): thus closer candidate are considereds first, leading to this simple algorithm, where $\mathscr{C}_{d}(w)$ is the set of candidates at distance d from w :

- if $\mathscr{C}_{1}(w)$ is not empty, return $\operatorname{argmax} P(c)$; $c \in \mathscr{C}_{1}(w)$
- (else) if $\mathscr{C}_{2}(w)$ is not empty, return $\operatorname{argmax} P(c)$;

$$
c \in \mathscr{C}_{2}(w)
$$

- etc...

For more details: see http://norvig.com/spell-correct.html

Keypoints

- Tokenization may be difficult and should be properly designed/defined
- n-gram approach (both on chars and on tokens) is a really effective tool for many tasks
- Smoothing techniques for n-gram probabilities estimates

References

[1] C. D. Manning \& H. Schütze, Foundations of Statistical Natural Language Processing, chapters 4.2, 5 and 6, MIT Press, 1999 (6 th p printing 2003).
[2] D. Jurafsky \& J. H. Martin, Speech and Language Processing, chapters 2, 3 and 4, Prentice Hall, 2009 (2nd ed.).
[3] H. Ney, U. Essen and R. Kneser, On structuring probabilistic dependences in stochastic language modelling", Computer Speech \& Language. 8 (1): 1-38, , jan. 1994.
[4] W. Gale \& K. Church, What's Wrong with Adding One?, in N. Oostdijk \& P. de Haan (eds.), Corpus-Based Research into Languge: In honour of Jan Aarts, pp. 189-200, Rodopi (1994).
[5] S. F. Chen \& J. Goodman, An empirical study of smoothing techniques for language modeling, Computer Speech and Language 13, 359-394 (1999; first published in ACL proceedings in 1996).

Appendix: more about Dirichlet distribution (1/3)

A D-dimensional Dirichlet distribution parametrized by α (a D-sized vector, the components of which are all strictly positive) is a distribution over the simplex with dimension $D-1$ such that:

$$
P(\theta \mid \alpha)=\Gamma\left(\sum_{i=1}^{D} \alpha_{i}\right) \cdot \prod_{i=1}^{D} \frac{\theta_{i} \alpha_{i}-1}{\Gamma\left(\alpha_{i}\right)}
$$

The components of α represent the relative importance of each component of θ, the average point being $\bar{\theta}=\frac{1}{S} \alpha$.
Their sum $S=\sum_{i=1}^{D} \alpha_{i}$ (inversely) influences the variance around this average point:

$$
\operatorname{Var}(\theta)=\left(\operatorname{diag}(\bar{\theta})-\bar{\theta} \bar{\theta}^{\prime}\right) /(S+1)
$$

For (all) α_{i} bigger than 1 , when some of the α_{i} approaches 1 , the corresponding θ-components approaches 0 (unless all the α_{i} are equal to 1).
For α_{i} smaller than 1, the distribution tends to "sharply increase" (in other words, to discretize) to the maximum α_{i} values.
When α_{i} is larger than 1 , the mode (i.e. the most probable point) is given by:

$$
\widehat{\theta}=\frac{1}{S-D}(S \bar{\theta}-1)=\frac{1}{S-D}(\alpha-1)
$$

more about Dirichlet distribution (2/3)

Several probability densities of a single Dirichlet dimension ("beta law") corresponding to different parameters α : $(11,22),(5,10),\left(\frac{3}{2}, 3\right),(1,2),\left(\frac{1}{2}, 1\right),\left(\frac{1}{10}, \frac{1}{5}\right)$, and $(1,1)$. Note how the $S=\alpha_{1}+\alpha_{2}$ parameter (inversely) influences the concentration of the probability density and how, when the components are lower than 1 , the distribution tends to "sharply increase" at the edges.

more about Dirichlet distribution (3/3)

Several Dirichlet probability densities on the 2-simplex (smaller left triangle) corresponding to different α parameters. Bluer zones indicate higher values. Note how the $S=\alpha_{1}+\alpha_{2}+\alpha_{3}$ parameter (inversely) influences the concentration of the probability density. It should also be noticed how when one of the α components approaches 1 the corresponding density tends to 0 and when the components are smaller than 1 the distribution "sharply increases" (on $(0,0)$ in the bottom right figure, in other words concentrates on $\theta=(0,0,1))$.

$$
\begin{gathered}
\alpha=(6,12,12)=30(.2, .4, .4) \\
\widehat{\theta}=(.18, .41, .41)
\end{gathered}
$$

$$
\begin{aligned}
\alpha= & (2,4,4)=10(.2, .4, .4) \\
& \widehat{\theta}=(.14, .43, .43)
\end{aligned}
$$

$$
\begin{gathered}
\alpha=(1.1,2.2,2.2)=5.5(.2, .4, .4) \\
\widehat{\theta}=(.04, .48, .48)
\end{gathered}
$$

