
Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Words, tokens, n-grams and Language Models

J.-C. Chappelier

Laboratoire d’Intelligence Artificielle
Faculté I&C

Words, tokens, n-grams and Language Models – 1 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Objectives of this lecture

➥ Where to start NLP processing chain from? Words?
➥ n-gram models
➥ Example usage of n-grams: Language Identification
➥ Out-of-Vocabulary forms

Words, tokens, n-grams and Language Models – 2 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Lexical level

What is the input of a NLP system? Where to start from?

☞ it’s a sequence of characters

Characters however seems a bit too low-level to play the role of
the atomic constituents of the language

☞ lack of generalization

What should then be the atomic entities of NLP?
What should basic core information be related to?

☞ This is a difficult question! (Still open?)
(phonological words? syntactic words? concepts?)

However, a general agreement is to focus on words.

It’s precisely the role of the lexical level:
first to identify, and then associate required information with the words.

Words, tokens, n-grams and Language Models – 3 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

What is a word??

The notion of "correct word" is difficult to define, especially out of context/application:

"credit card", "San Fransisco", "co-teaching": 1 or 2 words?
Is "John’s" from "John’s car" one single word?
Or are they two words? Is "’s" a word?
Similarly, what about "I’m", "isn’t", ...?

And it’s even worse for languages having aglutinative morphology (e.g. German),
or languages without explicit delimiter (e.g. Thai).

And what about: "I called SC to ask for an app.", or "C U"

☞ definition of words depends on the application/context
Should carefully think about it!

If your goal is to build a lexicon as portable/universal as possible:
choose minimal tokens and let a properly designed tokenizer (or even further modules)
glue these tokens in a way that fits each specific application.

Words, tokens, n-grams and Language Models – 4 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Word vs. tokens

Tentative definitions (may change here and there):

▶ Word (also sometimes called “type”): an element of the vocabulary;
i.e. we a priori define what words have to be.
Reminder: depends on the application!

▶ Token: ambiguously defined as (definition may vary):
1. either

a (continuous) sequence of non-separator characters
▶ requires the definition of “separator”
▶ is a separator a token in itself? (may vary)
▶ does not fundamentally solve the former problems, only postpone them

2. or
either an instance of a type or a (continuous) sequence of non-separator characters

▶ this confuses the problem even more.

We’d prefere to stick to definition 1 (and conceptually separate words from tokens).
Anyway: don’t bother so much about an (impossible?) absolute definition
but be aware of the problem!

Practice: M. O’Connel payed $12,000 (V.T.A. not included) with his credit card.
Words, tokens, n-grams and Language Models – 5 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Key points

1. The notion of words is (inherently?) ambiguous
and depends on the application.

2. Tokens are more useful in practice
but may also depend on the application

☞ !!! be sure all your NLP modules do indeed share the same definition
of what tokens are!!!
(otherwise, it’s really a way to shoot yourself in the foot)

Words, tokens, n-grams and Language Models – 6 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Language models
Back to start:
What is the input of a NLP system? Where to start from?

☞ it’s a sequence of characters −→ sequence(s?) of tokens −→ sequence(s?) of words

How to choose among sequences (of characters/tokens)?
How to decide which sequence is the best (e.g. comparing two)?

Examples:
▶ language identification: rendez-vous vs. gestalt (n-grams of characters)
▶ spelling-error correction: errro vs. error (n-grams of characters)
▶ collocations: real car wheel vs. real estate market (n-grams of tokens)
▶ tokenization: fullcapacitytocarryon (coming from OCR)

vs. full capacity to carry on (n-grams of characters / n-grams of tokens)

One approach: probabilities: n-grams of characters and n-grams of tokens
(for such an approach: “the best” = the more probable)

Notes:
▶ all modern neural NLP techniques actually focus on n-grams, estimating various

kinds of related probabilities
▶ probabilization of n-grams of tokens a.k.a. “language model”

Words, tokens, n-grams and Language Models – 7 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Probabilities: Notation (abuse)

X , Y , ..., X1, ...: (discreate) random variables

x , y , ..., x1, ...: values x ∈ X : values for X

P(x): same as P(X = x) when X is clear by context

P(X): distribution (set of all P(x) for all x ∈ X)

(Note: for continuous variables, P(X) denotes in fact the density function dP(X))

P(x |y): same as P(X = x |Y = y) when X and Y are clear by context

P(X |y): distribution knowing Y = y (set of all P(X = x |Y = y) for all x ∈ X)

P(X |Y): shouldn’t make much sense

P(x ,y): same as P(X = x ,Y = y) when X and Y are clear by context, typically
P(X1 = x ,X2 = y)

Notice: P(X1 = x1,X2 = x2) is truly the same as P(X2 = x2,X1 = x1),
whereas P(x1,x2) is not the same as P(x2,x1):
P(x1,x2) is P(X1 = x1,X2 = x2), whereas P(x2,x1) is P(X1 = x2,X2 = x1)!

Words, tokens, n-grams and Language Models – 8 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Probabilities: quick (and dirty) reminder

∑
x1∈X1,...,xN∈XN

P(x1, ...,xN) = 1 (and P(x1, ...,xN)≥ 0)

Additivity (a.k.a. marginalization): (M < N)

P(x1, ...,xM) = ∑
xM+1∈XM+1,...,xN∈XN

P(x1, ...,xM ,xM+1, ...,xN)

Conditional probabilities: (for P(y1, ...,yN) ̸= 0)

P(x1, ...,xM |y1, ...,yN) =
P(x1, ...,xM ,y1, ...,yN)

P(y1, ...,yN)

Note: thus ∑
x1∈X1,...,xM∈XM

P(x1, ...,xM |y1, ...,yN) = 1

Chain rule:

P(x1 · · ·xN) = P(x1) ·
N

∏
i=2

P(xi |x1 · · ·xi−1)

Bayes’ rule: (for P(x) ̸= 0 and P(y) ̸= 0)

P(x |y) = P(x) ·P(y |x)
P(y)

Words, tokens, n-grams and Language Models – 9 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

n-gram approach

Consider a sequence of xs (characters, tokens, ...)

Make use of (n−1)-order Markov assumption: P(xi |x1 · · ·xi−1) = P(xi |xi−n+1 · · ·xi−1)

to end up with (S: size of the input):

P(x1 · · ·xS) = P(x1 · · ·xn) ·
S

∏
i=n+1

P(xi |xi−n+1 · · ·xi−1)

Use this value as a score to compare sequences (n ≥ 2):
S−n+1

∏
i=1

P(xi · · ·xi+n−1)

S−n+1

∏
i=2

P(xi · · ·xi+n−2)

P(xi · · ·xi+n−1): paramaters estimated on some corpus

Reminder: P(xi · · ·xi+n−2) = ∑
x

P(xi · · ·xi+n−2 x)

these are “the n-grams (probabilities)”

Words, tokens, n-grams and Language Models – 10 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

n-gram approach: example

Assume n = 3 (trigrams):

P(errro) = P(err) ·P(r|rr) ·P(o|rr)

= P(err) · P(rrr)
P(rr)

· P(rro)
P(rr)

P(error) = P(err) · P(rro)
P(rr)

· P(ror)
P(ro)

Parameters: trigrams probabilities: P(aaa), ..., P(err), ..., P(rro), ..., P(zzz)

Bigrams probabilities are simply sums of trigrams’ : P(ro) = ∑
x

P(rox)

Words, tokens, n-grams and Language Models – 11 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Caveat!
Don’t compare probabilities of sequences of different sizes!!
P(x1, ...,xM) and P(x1, ...,xN) usually DO NOT COMPARE (M ̸= N)
They are in two different probabilized spaces:

∑
x1∈X1,...,xN∈XN

P(x1, ...,xN) = 1

for a given N: in fact, P(x1, ...,xN) is a P(x1, ...,xN |size = N)

For instance, do not compare P(real estate), P(real estate market) and
P(real estate market increase)

Then how compare them if we have to?

☞ put (all of them) in a broader model in which they make sense

Note: we here made the assumption that P(x1, ...,xmax(N,M)) is not a decent “broader”
model
(for instance that P(real estate market) = ∑w P(real estate market w) is of no interest
for the considered application [since: the shorter, the higher])

Words, tokens, n-grams and Language Models – 12 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Estimation (= model learning)

Where do the values P(xi · · ·xi+n−1) come from?

☞ from a learning corpus

Simplest estimate: maximum-likelihood estimate:

P̂(x1 · · ·xn) =
#(x1 · · ·xn)

Nn

where #(y) is the count of y (= the number of times y appears in the corpus)
and Nn is the size of the corpus = the total number of n-grams in that corpus:
Nn = ∑

x1,...,xn

#(x1 · · ·xn)

Words, tokens, n-grams and Language Models – 13 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Better estimates (1/2)
Maximum-likelihood estimates (MLE) are the simplest ones
but suffer from unseen events:
unseen rare events have a 0 frequency, thus a 0 probability MLE (☞ overfitting)

That could be OK in domains where the number of zeros isn’t huge (e.g. maybe for
categorization),
but is not for language modeling.

Reminder: power laws

☞ which 0 are “real zeros” and which ones are simply unseen, but possible, events?
Difficult question!

Words, tokens, n-grams and Language Models – 14 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Better estimates (2/2)
Several approaches to better estimate unseen rare events (a.k.a smoothing
methods):
▶ introduce a “prior” (a.k.a. “additive smoothing”)

☞ leads to special cases known as Lidstone smoothing, Laplace smoothing
or add-one smoothing

▶ add a new word (e.g. “<UNKNOWN>”) and estimate (held-out) probabilities
accordingly

▶ backoff smoothing: fall-back on smaller n: increase the chance to observe events
by decreasing the context-size

▶ interpolation: mix n-grams with (n−1)-grams, (n−2)-grams, etc.
the mixing coefficients can be fixed or adaptative (learned on held-out data)

▶ Good-Turing smoothing: use the count of hapaxes (events seen only once) to
improve estimates of probabilities of unseen events

▶ Kneser-Ney smoothing: considered as the most-effective for n-grams;
it’s a mixture of discounting and interpolation

☞ let’s in-depth explain the first one

Words, tokens, n-grams and Language Models – 15 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Additive smoothing (properly explained; 1/2)

n-grams is a probabilistic model, the parameters θ of which are the probabilities of the
various n-grams (i.e. θ is a constrained vector of dimension D = |X |n, with |X | the
number of possible values for X)
A partially Bayesian view on learning θ from a corpus C leads to estimating θ as:

θ̂ = argmax
θ

P(θ |C) = argmax
θ

P(θ)P(C |θ)

P(C |θ) (the likelihood of a corpus, represented here as a “bag-of-n-grams”, i.e. by its n-grams
counts) follows a multinomial law (the parameters of which are θ).
It’s conjugate prior is the Dirichlet distribution; so let’s model P(θ) by a Dirichlet
distribution (it’s indeed a probability density function on probabilities!):

P(θ |α) = Γ(
D

∑
i=1

αi) ·
D

∏
i=1

θi
αi−1

Γ(αi)
(αi > 0)

where Γ() represents the “gamma function”.

Words, tokens, n-grams and Language Models – 16 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Additive smoothing (properly explained; 2/2)

Thus the posterior P(θ |C) is itself a Dirichlet distribution, which is maximized (MAP) for

P̂(x1 · · ·xn) =
#(x1 · · ·xn)+αx1,...,xn −1

Nn +
(
∑x1,...,xn αx1,...,xn

)
−D

In a “more Bayesian view”, however, the expected value of θx1···xn = P(x1 · · ·xn) (under
posterior Dirichlet distribution) is:

P̃(x1 · · ·xn) = Eθ |C ,α [θi] =
#(x1 · · ·xn)+αx1,...,xn

Nn +∑x1,...,xn αx1,...,xn

and moreover (predictive distribution):

P(x1 · · ·xn|C ,α)= Eθ |C ,α [P(x1 · · ·xn|θ)︸ ︷︷ ︸
=θx1···xn

] = P̃(x1 · · ·xn) =
#(x1 · · ·xn)+αx1,...,xn

Nn+ ∑
x1,...,xn

αx1,...,xn

Words, tokens, n-grams and Language Models – 17 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Example (bigrams among two letters)

X =
{
a,b

}
, n = 2 −→ D = |X |n = 22 = 4 :

θ =
(

P(ab),P(ba),P(aa),P(bb)
)

Consider C = ababaabababaabab =
{

(ab, 7), (ba, 6), (aa, 2), (bb, 0)
}

MLE:
P(ab) =

7
15

P(ba) =
6

15
P(aa) =

2
15

P(bb) = 0

Predictive distribution with uniform Dirichlet prior αi = 0.5 for all i ∈
{
ab, ba, aa, bb

}
:

P(ab|C ,α) =
7.5
17

P(ba|C ,α) =
6.5
17

P(aa|C ,α) =
2.5
17

P(bb|C ,α) =
0.5
17

Words, tokens, n-grams and Language Models – 18 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Additive smoothing = Dirichlet prior

So additive smoothing techniques

P(x1 · · ·xn|C ,α) =
#(x1 · · ·xn)+αx1,...,xn

Nn + ∑
x1,...,xn

αx1,...,xn

result from a Bayesian predictive distribution with a Dirichlet-prior assumption:

▶ MLE : “αi = 0” (not possible in this framework)

▶ αi = 1: “Laplace smoothing”, a.k.a. “add-one smoothing”
☞ don’t use that for linguistic corpora (see next slides and reference [7])

▶ αi < 1: makes sense with power laws (a priori θ lies “close to the borders”)

But what does αi actually represent (intuitively)?

The components of α represent the relative importance of each component of θ .
For αi smaller than 1, the distribution tends to “sharply increase” (in other words, to
discretize) to the maximum αi values.
More details in appendix for those interested.

Words, tokens, n-grams and Language Models – 19 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Examples of α parameter in 2D
For D = 2 (i.e. only 1 free parameter; n = 1, |X |= 2)

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

θ

Dir2(x,10,20)
Dir2(x,0.1,0.2)

Dir2(x,1,1)

Words, tokens, n-grams and Language Models – 20 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Examples of α parameter in 3D

For D = 3 (i.e. 2 free parameters; n = 1, |X |= 3)

 0 0.2 0.4 0.6 0.8 1

θ₁

 0

 0.2

 0.4

 0.6

 0.8

 1

θ
₂

 0 0.2 0.4 0.6 0.8 1

θ₁

 0

 0.2

 0.4

 0.6

 0.8

 1

θ
₂

 0 0.2 0.4 0.6 0.8 1

θ₁

 0

 0.2

 0.4

 0.6

 0.8

 1

θ
₂

α = (6,12,12) α = (1,1,1) α = (0.6,0.7,0.8)

Words, tokens, n-grams and Language Models – 21 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Example usage of n-gram: Language Identification
Example of tasks making use of language models: Language Identification
Goal: identification of the source language
Input: some textual document (or part of it)
Output: (name of the) language it was (mostly) written in

Two main techniques (which are combined):
▶ most frequent words
▶ Decomposition into n-grams of characters

Example: for trigrams
dribble → (dri,rib,ibb,bbl,ble)

In practice: n varies from 2 to 4

From reference corpora, estimate the likelihood of a word to belong to a given
language.
Example for trigrams:

P(dribble|L) = P(dri|L) · P(rib|L)
P(ri|L)

· ... · P(ble|L)
P(bl|L)

Trigrams for French, English, German and Spanish: ≃ 90% discrimination accuracy
Words, tokens, n-grams and Language Models – 22 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Likelihood vs. Posterior probability

In the former slide, why make use of the likelihood P(w |L) rather than the posterior
probability P(L|w)?
▶ They are both hard to accurately model without any further assumptions (w

belongs to a huge set!)
but no further simplification can be made on P(L|w): w is fixed (and there is
nothing to gain “simplifying” L!)
On the other hand, P(w |L) can be further simplified making assumptions on w

▶ Using the Bayes’ rule:

argmax
L

P(L|w) = argmax
L

P(w |L) ·P(L)

☞ introduces the likelihood anyway! (which could then be simplified further)

▶ If you can accurately estimate P(L), sure, make use of it!

▶ Otherwise, the least biaised hypothesis (maximum entropy) is to a priori assume
that all languages are all equally possible: maximizing posterior probability is
then the same as maximizing likelihood

Words, tokens, n-grams and Language Models – 23 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Out of Vocabulary forms

Out of Vocabulary (OoV) forms matter:
they occur quite frequently (e.g. ≃ 10% in newspapers)

What do they consist of?
▶ spelling errors: foget, summmary, usqge, ...

▶ neologisms: Internetization, Tacherism, ...
☞ morphology (and may also later become part of the lexicon)

▶ borrowings: gestalt, rendez-vous, ...
☞ shall be included in the lexicon at some point

▶ forms difficult to exhaustively lexicalize:
(numbers,) proper names, abbreviations, ...

☞ ad-hoc regular expressions, Named-Entity Recognition

Words, tokens, n-grams and Language Models – 24 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Spelling error correction
Input:
▶ incorrect form (OoV),
▶ lexicon,
▶ threshold (e.g. max. distance)

Output:
▶ all correct words (∈ lexicon) within

threshold from input string correct strings

all strings

max. distancemax. distance

input stringinput string

correct strings

solutions

Two approaches:
Exact lexicon-based Probabilistic

correct forms: lexicon lexicon
or any string

(ordered with probabilities)

metric: edit distance probability

In this lecture:
▶ only a few words about the probabilistic approach

Words, tokens, n-grams and Language Models – 25 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Probabilistic approach summarized (1/2)

Make (one more time!) use of n-grams (both levels, characters and tokens, are combined)

w : OoV token to be corrected (input string)

c: candidate correction, out of C (w), set of possible candidates for w

argmax
c∈C (w)

P(c|w) = argmax
c∈C (w)

P(c) ·P(w |c)

P(c): language model (n-grams of tokens/words; n = 1 here, but could easily be
extended to neighboring tokens (n > 1 then))

P(w |c): error model: edit distance and/or m-grams of characters

Words, tokens, n-grams and Language Models – 26 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Probabilistic approach summarized (2/2)

A usual (unexplicit?) assumption is that P(w |c) is many orders of magnitude higher for
smaller edit distance (than for higher): thus closer candidate are considereds first,
leading to this simple algorithm,
where Cd (w) is the set of candidates at distance d from w :

▶ if C1(w) is not empty, return argmax
c∈C1(w)

P(c);

▶ (else) if C2(w) is not empty, return argmax
c∈C2(w)

P(c);

▶ etc...

For more details: see http://norvig.com/spell-correct.html

Words, tokens, n-grams and Language Models – 27 / 30

http://norvig.com/spell-correct.html

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Keypoints

▶ Tokenization may be difficult and should be properly designed/defined

▶ n-gram approach (both on chars and on tokens) is a really effective tool for many
tasks

▶ Smoothing techniques for n-gram probabilities estimates

Words, tokens, n-grams and Language Models – 28 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

References

[1] C. D. Manning & H. Schütze, Foundations of Statistical Natural Language Processing,
chapters 4.2, 5 and 6, MIT Press, 1999 (6th printing 2003).

[2] D. Jurafsky & J. H. Martin, Speech and Language Processing, chapters 2, 3 and 4,
Prentice Hall, 2009 (2nd ed.).

[3] H. Ney, U. Essen and R. Kneser, On structuring probabilistic dependences in stochastic
language modelling", Computer Speech & Language. 8 (1): 1–38, , jan. 1994.

[4] W. Gale & K. Church, What’s Wrong with Adding One?, in N. Oostdijk & P. de Haan (eds.),
Corpus-Based Research into Languge: In honour of Jan Aarts, pp. 189-200, Rodopi (1994).

[5] S. F. Chen & J. Goodman, An empirical study of smoothing techniques for language
modeling, Computer Speech and Language 13, 359–394 (1999; first published in ACL
proceedings in 1996).

Words, tokens, n-grams and Language Models – 29 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

Appendix: more about Dirichlet distribution (1/3)
A D-dimensional Dirichlet distribution parametrized by α (a D-sized vector, the
components of which are all strictly positive) is a distribution over the simplex with
dimension D−1 such that:

P(θ |α) = Γ(
D

∑
i=1

αi) ·
D

∏
i=1

θi
αi−1

Γ(αi)

The components of α represent the relative importance of each component of θ , the
average point being θ = 1

S α.

Their sum S =
D

∑
i=1

αi (inversely) influences the variance around this average point:

Var(θ) = (diag(θ)−θ θ
′
)/(S+1)

For (all) αi bigger than 1, when some of the αi approaches 1, the corresponding
θ -components approaches 0 (unless all the αi are equal to 1).
For αi smaller than 1, the distribution tends to “sharply increase” (in other words, to
discretize) to the maximum αi values.
When αi is larger than 1, the mode (i.e. the most probable point) is given by:

θ̂ =
1

S−D
(S θ −1) =

1
S−D

(α −1)

Words, tokens, n-grams and Language Models – 30 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

more about Dirichlet distribution (2/3)
Several probability densities of a single Dirichlet dimension (“beta law”) corresponding
to different parameters α: (11,22), (5,10), (3

2 ,3), (1,2), (
1
2 ,1), (

1
10 ,

1
5), and (1,1). Note

how the S = α1 +α2 parameter (inversely) influences the concentration of the
probability density and how, when the components are lower than 1, the distribution
tends to “sharply increase” at the edges.

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

θ

Dir2(x,10,20)
Dir2(x,0.1,0.2)

Dir2(x,1,1)
Dir2(x,5,10)

Dir2(x,1.5,3)
Dir2(x,1,2)

Dir2(x,0.5,1)

Words, tokens, n-grams and Language Models – 30 / 30

Introduction

Words/Tokens

N–grams

Language
Identification

Spelling Error
Correction

Conclusion

©EPFL
J.-C. Chappelier

more about Dirichlet distribution (3/3)
Several Dirichlet probability densities on the 2-simplex (smaller left triangle)
corresponding to different α parameters. Bluer zones indicate higher values.
Note how the S = α1 +α2 +α3 parameter (inversely) influences the concentration of
the probability density. It should also be noticed how when one of the α components
approaches 1 the corresponding density tends to 0 and when the components are
smaller than 1 the distribution “sharply increases” (on (0,0) in the bottom right figure, in
other words concentrates on θ = (0,0,1)).

 0 0.2 0.4 0.6 0.8 1

θ₁

 0

 0.2

 0.4

 0.6

 0.8

 1
θ
₂

 0 0.2 0.4 0.6 0.8 1

θ₁

 0

 0.2

 0.4

 0.6

 0.8

 1

θ
₂

α = (6,12,12) = 30(.2, .4, .4) α = (2,4,4) = 10(.2, .4, .4)
θ̂ = (.18, .41, .41) θ̂ = (.14, .43, .43)

 0 0.2 0.4 0.6 0.8 1

θ₁

 0

 0.2

 0.4

 0.6

 0.8

 1

θ
₂

 0 0.2 0.4 0.6 0.8 1

θ₁

 0

 0.2

 0.4

 0.6

 0.8

 1

θ
₂

α = (1.1,2.2,2.2) = 5.5(.2, .4, .4) α = (0.6,0.8,0.99) = 2.39(.25, .33, .41)
θ̂ = (.04, .48, .48) θ̂ = (0,0,1)

Words, tokens, n-grams and Language Models – 30 / 30

	Introduction
	Words/Tokens
	N–grams
	Language Identification
	Spelling Error Correction
	Conclusion

