Classification

Dimensionality reduction

Conclusion

Textual Data Analysis

J.-C. Chappelier

Laboratoire d'Intelligence Artificielle Faculté I&C

Textual Data Analysis - 1 / 44

Classification

Dimensiona reduction

Conclusion

Objectives of this lecture

Basics of textual data analysis:

- ➡ classification
- ➡ visualization: dimensionality reduction / projection

(useful for a good understanding/presentation of classification/clustering results)

Is this course a Machine Learning Course? AVEATREMMUER

- NLP makes use of Machine Learning (as would Image Processing for instance)
- but good results require:
 - good preprocessing
 - good data (to learn from), relevant annotations
 - good understanding of the pros/cons, features, outputs, results, ...
- The goal of this course is to provide you with specific knowledge about NLP. FS-

New:

The goal of this lecture is to make some link between general ML and NLP. R This lecture is worth deepening with some real ML course.

Classification

Dimensionali reduction

Conclusion

Introduction: Data Analysis

WHAT does Data Analysis consist in?

"to represent in a live and intelligible manner the (statistical) informations, simplifying and summarizing them in diagrams"

classification (regrouping in the original space)
 "visualization": projection in a low-dimension space

Classification/clustering consists in **regrouping** several objects in categories/clusters (i.e. subsets of objects)

Vizualisation: display in a intelligible way the internal structures of data

[L. Lebart]

Classification

Dimensionali reduction

Conclusion

Contents

① Classification

- $\textcircled{} \ \ \, \text{Framework}$
- 2 Methods (in general)
- ③ Presentation of a few methods
- ④ Evaluation
- 2 Dimensionality reduction (Visualization)
 - $\textcircled{1} \quad \text{Introduction} \quad$
 - ② Principal Component Analysis (PCA)
 - ③ Multidimensional Scaling

Classification

Methods Evaluation

Dimensionality reduction

Conclusion

Supervized/unsupervized

The classification can be

 supervized (strict meaning of classification) : Classes are known a priori They are usually meaningful for the user

 unsupervized (called: clustering) : Clusters are based on the inner structures of the data (e.g. neighborhoods) Their meaning is really more dubious

TextualData Analysis: relate documents(or words)so as to...structure (supervized)/discover structure (unsupervized)

Framework

Methods Evaluation

Dimensionality reduction

Conclusion

Classify what?

WHAT is to be classified?

Stating point: a **chart** (numbers) representing, *in a way or another*, a set of *N* objects (or "observations") $x^{(i)}$ characterized by *m* "features" $x_i^{(i)}$:

- continuous values ("importance" of a given feature for a given oject)
- contingency tables: co-occurrence counts (feature–feature)
- presence/absence of feature
- distance/(dis)similarity (symmetric square chart: object-object or feature-feature)

Two complementary points of view:

- ① *N* points in \mathbb{R}^m
- 2 *m* points in \mathbb{R}^N

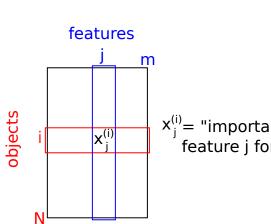
Not necessarily the same metrics:

objects similarities

VS.

features similarities

Framework Methods Evaluation



Classify what?

 $x_j^{(i)}$ = "importance" of feature j for object i

Classification

Framework

Methods Evaluation

Dimensionality reduction

Conclusion

Textual Data Classification

What is classified? (what objects?)

- authors (1 object = several documents)
- documents
- paragraphs
- "words"(/tokens) (vocabulary study, lexicometry)

► How to represent the objects? (what features?)

- document indexing
- choose the textual units that are meanigfull
- choice of the metric/similarity

reprocessing: "unsequentialize" text, suppress (meaningless) lexical variability

Frequently: lines = documents, columns = "words" (tokens, words, *n*-grams) regressions are complementary

Classification

Framework Methods

Dimensionality reduction

Conclusion

Textual Data Classification: examples of applications

- Information Retrieval
- Open-Questions Survey (polls)
- emails classification/routing
- client survey (complaints analysis)
- Automated processing of ads
- ▶ ...

Framework

Methods Evaluation

Dimensionality reduction

Conclusion

(Dis)Symilarity Matrix

Most of classification techniques use distance measures or (dis)similarities: matrix of the distances between each data points: $\frac{N(N-1)}{2}$ values (symmetric with null diagonal)

distance ("metric"):

- ① $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
- 2 d(x,y) = d(y,x)
- 3 $d(x,y) \leq d(x,z) + d(z,y)$

dissimilarity: and only

Classification Framework

Methods Evaluation

Dimensionality reduction

Conclusion

Some of the usual metrics/similarities

 $\triangleright \chi^2$:

$$d(x,y) = \sqrt{\sum_{j=1}^{m} (x_j - y_j)^2}$$

• generalized (
$$p \in [1...\infty[)$$
):

$$d_{\rho}(x,y) = \left(\sum_{j=1}^{m} (x_j - y_j)^{\rho}\right)^{1/\rho}$$

$$d(x,y) = \sum_{j=1}^m \lambda_j (\frac{x_j}{\sum x_{j'}} - \frac{y_j}{\sum y_{j'}})^2$$

where $\lambda_j = \frac{\sum_i \sum_j u_{ij}}{\sum_i u_{ij}}$ depends on some reference data (u_i , i = 1...N)

Classification

Framework Methods Evaluation

Dimensionality reduction

Conclusion

Some of the usual metrics/similarities

 $\mathscr{S}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{j=1}^{m} x_j y_j}{\sqrt{\sum_i x_j^2} \sqrt{\sum_i y_j^2}} = \frac{\mathbf{x}}{||\mathbf{x}||} \cdot \frac{\mathbf{y}}{||\mathbf{y}||}$

- for probability distributions :
 - KL-divergence:

cosine (similarity) :

$$D_{KL}(x,y) = \sum_{j=1}^{m} x_j \log\left(\frac{x_j}{y_j}\right)$$

Jensen-Shannon divergence:

$$JS(x,y) = \frac{1}{2} \left(D_{KL}(x, \frac{x+y}{2}) + D_{KL}(y, \frac{x+y}{2}) \right)$$

Hellinger distance:

$$d(x,y) = d_{\text{Euclid}}(\sqrt{x},\sqrt{y}) = \sqrt{\sum_{j=1}^{m} (\sqrt{x_j} - \sqrt{y_j})^2}$$

Textual Data Analysis - 13 / 44

Classification Framework

Methods Evaluatior

Dimensionality reduction

Conclusion

Computational Complexity

Various complexities (depends on the method), but typically: $\frac{N(N-1)}{2}$ distances

m computations for one single distance complexity in $m \cdot N^2$

Costly: $m \simeq 10^3$, $N \simeq 10^4 \implies \rightarrow 10^{11} \parallel$

Classification

Framework

Methods

Evaluation

Dimensionality reduction

Conclusion

Classification as a mathematical problem

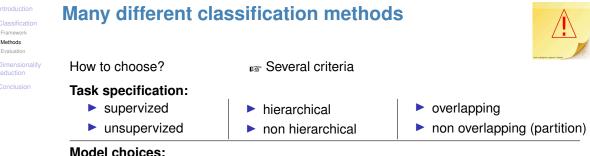
- supervized:
 - function approximation

$$f(x_1,...,x_m)=C_k$$

- distribution estimation: $P(C_k|x_1,...,x_m)$ or $P(x_1,...,x_m|C_k)$
 - > parametric: multi-gaussian, maximum likelihood, Bayesian inference, discriminative analysis
 - non-parametric: kernels, K nearest neighbors, LVQ, neural nets (Deep Learning, SVM)
- inference:
 - if $x_i = ...$ and $x_j = ...$ (etc.) then $C = C_k$ so decision trees

unsupervized (clustering):

(local) minimization of a global criterion over the data set



model choices:

- generative models (P(X, Y))
- discriminative models (P(Y|X))
- parametric
- non parametric (= many parameters)
- linear methods (Statistics)
- trees (GOFAI)
- neural networks

Classification

Framework

Methods

Evaluation

Dimensionality reduction

Conclusion

Classification methods: examples

supervized

- Naive Bayes
- K-nearest neighbors
- ID3 C4.5 (decision tree)
- Kernels, Support Vector Machines (SVM)
- Gaussian Mixtures
- Neural nets: Deep Learning, SVM, MLP, Learning Vector Quantization
- ▶ ...
- unsupervized
 - K-means
 - dendrograms
 - minimum spanning tree
 - Neural nets: Kohonen's Self Organizing Maps (SOM)
 - ▶ ...
- The question you should ask yourself: What is the optimized criterion?

Classification Framework

Methods

Dimensionality reduction

Conclusion

Bayesian approach

Probabilitic modeling: the classification is made according to $P(C_k|x)$: an object $x^{(i)}$ is classified in category

 $\operatorname*{argmax}_{C} P(C|x=x^{(i)})$

Discriminative: model $P(C_k|x)$ directly;

Generative: assume we know $P(C_k)$ and $P(x|C_k)$, then using Bayes formula:

$$P(C|x = x^{(i)}) = \frac{P(x = x^{(i)}|C) \cdot P(C)}{P(x = x^{(i)})} = \frac{P(x^{(i)}|C) \cdot P(C)}{\sum_{C} [P(C) \cdot P(x^{(i)}|C)]}$$

P(*C*): "*prior*"

P(C|x): "posterior"

P(x|C): "likelihood"

In practice, those distributions are hardly known.

All the difficulty consists in "learning" (estimating) them from samples making several hypotheses.

Classification Framework Methods Evaluation

reduction

Conclusion

Naive Bayes

Supervised generative probabilistic (non overlaping) model: Classification is made using the Bayes formula

P(C) is estimated directly on a typical example What is "naive" in this approach is the computation of P(x|C)Hypothesis: feature independance:

$$P(x|C) = \prod_{j=1}^{m} p(x_j|C)$$

The $p(x_j|C)$ (a priori much fewer than the P(x|C)) are estimated on typical examples (learning corpus).

In the case of Textual Data: features = indexing terms (e.g. lemmas)

This hypothesis is most certainly wrong but good enough in practice

Glassification

Methods

Dimensionality reduction

Conclusion

(multinomial) Logistic regression

Supervised *discriminative* probabilistic (non overlaping) model: Directly model P(C|x) as:

$$P(C|x) = \prod_{j=1}^{m} f(x_j, C) = \frac{\exp(\sum_{j=1}^{m} w_{C,j} x_j)}{\sum_{C'} \exp(\sum_{j'=1}^{m} w_{C',j'} x_{j'})}$$

where $w_{C,j}$ is a parameter, the "weight" of x_j for class *C* (x_j being here some numerical representation of *j*-th indexing term: 0–1, frequency, log-normalized, ...).

The parameters $w_{C,j}$ can be learned using various approximation algorithms (e.g. iterative or batch; IGS, IRLS, L-BGFS, ...), for instance:

$$w_{\mathcal{C},j}^{(t+1)} = w_{\mathcal{C},j}^{(t)} + \alpha \left(\delta_{\mathcal{C},\widehat{\mathcal{C}}_n} - \mathcal{P}(\mathcal{C}|x_n) \right) x_{nj}$$

with α a learning parameter (step strength/speed) and δ_{C,\widehat{C}_n} the Kronecker delta function between class C and expected class \widehat{C}_n for sample input x_n .

Classification Framework Methods

Methous

Dimensionality reduction

Conclusion

K nearest neighbors – Parzen window

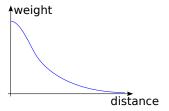
non hierachical non overlapping classification

K nearest neighbors:

very simple: classify a new object according to the majority class in its K nearest neighbors (vote). (no learning phase)

Parzen window:

same idea, but the votes are weighted according to the distance to the new object



Framework

Methods

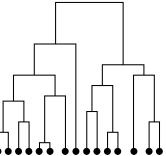
Dimensionality reduction

Conclusion

It's a bottom-up hierachical clustering (= unsupervised) Starts form a distance chart between the N objects

- Regroup in one cluster the two closest "elements" and consider the new cluster as a new element
- ② compute the distances between this new element and the others
- ③ loop in ① while there are more than one element
- representation in the form of a binary tree

Complexity: $\mathcal{O}(N^2 \log N)$



Classification Framework

Methods

Dimensional

reduction

Conclusion

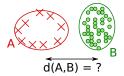
Dendrograms: "linkage" scheme (1/2)

"regroup the two closest elements"

IS closest?

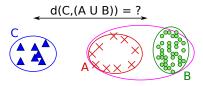
Two questions:

1. How to define the distance between two clusters (two sets of elements)? (based on the distances between the elements)



2. How to (efficiently) compute distance between a former cluster and a (new) merge of two clusters?

(based on the former distances between clusters)



Classification Framework

Methods

Evaluation

Dimensionality reduction

Conclusion

" <i>regroup the two closest elements</i> " Solvers? Let <i>A</i> and <i>B</i> be two subclusters: what is their distance? (Lance-Williams alg				
method	definition $D(A,B) =$	$\begin{array}{c} merging \\ D(A \cup B, C) = \end{array}$		
single linkage:	$\min_{x\in A,y\in B}d(x,y)$	$\min\Big(D(A,$	C), D(B, C))	
complete linkage:	$\max_{x\in A,y\in B} d(x,y)$	$\max \Big(D(A,$	$C), D(B, C)\Big)$	
average linkage:	$\frac{1}{ A \cdot B }\sum_{x\in A,y\in B}d(x,y)$		$+ B \cdot D(B,C)$ + B	-

Dendrograms: "linkage" scheme (2/2)

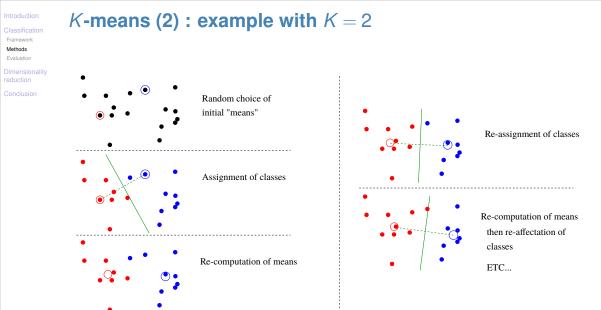
K-means

Classification Framework

- Methods
- Evaluation
- Dimensionality reduction
- Conclusion

non hierachical non overlapping clustering

- ① choose a priori the number of clusters : K
- ② randomly draw K objects as clusters' representatives ("clusters' centers")
- ③ partition the objects with respect to the K centers (closest)
- 4 recompute the *K* centers as the mean of each cluster
- (5) loop in (3) until convergence (or any other stoping criterion).



©EPFL J.-C. Chappelier

Classification

Framework

Methods Evaluation

Dimensionality reduction

Conclusion

K-means (3)

cluster representatives: mean (centre of gravity): $R_k = \frac{1}{N_k} \sum_{x \in C_k} x$

The algorithm is convergent because the intra-class variance can only decrease

$$v = \sum_{i=1}^{K} \sum_{x \in C_i} p(x) d(x, R_i)^2$$

(p(x): probability of the objects)

BUT it converges to a **local** minimum; improvements:

- stable clusters
- Deterministic Annealing

Other methods similar to K-means:

- having several representatives
- compute representatives at each binding of an individual
- choose representatives among the objects

Classification Framework Methods Evaluation

Dimensionali reduction

Conclusion

about Word Embedings & Deep Learning

Of course nowadays (since the \simeq 5 years "deep learning buzz"), many NLP classification tasks are done using so-called "*Word embedding*" and "*Deep learning*"

(sometimes with a bit of confusion and surprisingly oblivious of the large body of past work)

"*Word embedding*" are indeed numerical representation of the "words" usefull as "features" to represent documents

"Deep learning" refers to Neural Networks-based approaches to classification (although

- there is NO need of deep learning for good word-embeddings
- <u>not</u> all Neural Network models (NN) are deep learners

much more about all this in two weeks (dedicated lecture)

Classification Framework

- Methods
- Evaluation

Dimensionality reduction

Conclusion

Classification: evaluation

- ► classification (supervised): evaluation is "easy" → test corpus (some known samples kept for testing only)
- clustering (unsupervised): objective evaluation is more difficult: what are the criteria?

(supervised) Classification: **REMINDER** (see "Evaluation" lecture)

- Check IAA (if possible)
- Measure the misclassification error on the test corpus

really <u>separated</u> from the learning set (and also from the validation set, if any)

🖙 criteria: confusion matrix, error rate, ..

Is the difference in the results statistically significant?

Classification Framework Methods Evaluation

Dimensionalit reduction

Conclusion

Clustering (unsupervised learning) evaluation

There is no absolute scheme with which to evaluate clustering, but a variety of ad-hoc measures from diverse areas/point-of-view.

For K non overlapping clusters (with objects having a probability p), standard measures include:

Intra-cluster variance (to be minimized):

Inter-cluster variance (to be maximized):

$$V = \sum_{k=1}^{K} \sum_{x \in C_k} p(x) d(x, \overline{x_k})^2$$
$$V = \sum_{k=1}^{K} \underbrace{\left(\sum_{x \in C_k} p(x)\right)}_{=p(C_k)} d(\overline{x_k}, \overline{x})^2$$

The best way is to *think* to how you want to assess the quality of a clustering w.r.t. your needs:

usually: high intra-cluster similarity and low inter-cluster similarity (but what does "*similar*" mean?...)

One way also is to have manual evaluation of the clustering.

<u>Note</u>: if you already have a gold-standard with *classes*: why not use (supervised) classification in the first place??

(rather than using a supervised corpus to assess unsupervised methods...)

Classification

Dimensionality reduction

Framework

Linear projection Non-linear projections Mappings

"Visualization"

Visualize: project/map data in 2D or 3D

More generally: techniques presented in this section are to lower the dimension of data

go form *N*-D to *n*-D with n < N or even $n \ll N$

IN usually means: go from *sparse* to *dense* representation

visualization: projection in a low-dimension space classification: regrouping in the original space

Which one to start with, depends on your data/application (can even loop between the two)

complementary

Classification

Dimensionality reduction

Framework

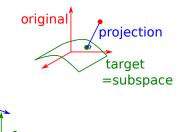
Linear projections Non-linear projections

Conclusion

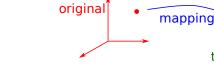
- Simple methods (but poorly informative): ordered list, "thermometer-like", histograms
- some of the classification methods can be used:
 - use/display the classes

Several approaches

- e.g. dendrograms with minimal spanning tree
- Linear and non-linear projections/mappings (projection: in the same space as original data mapping: in some other space)



target



Classification

Dimensionality reduction

Framework

Linear projections Non-linear projections Mannings

Conclusion

Linear projections

Projections on selected sub-spaces of the original space

- Principal Components Analysis (PCA) [Pearson 1901]: object–feature chart (continuous values) feature similarity: correlations object similarity: distance on the feature space
- Correspondance Analysis:

contingency tables row/column symmetry (features) χ^2 metric

Singular value decomposition

Classification

Dimensionality reduction

Linear projections

Non-linear projections

Input: a matrix \overline{M} objects (rows) – features (columns) (of size $N \times m$ with N > m) centered: $\overline{M}_{i\bullet} = x^{(i)} - \overline{x}$

Singular value decomposition (SVD) of \overline{M} :

Principal Components Analysis (PCA)

eigenvalue decomposition of $\overline{M}\overline{M}^{t}$ (i.e. the covariance matrix (multiplied by (N-1)))

 $\square = U \wedge V^t$

A diagonal, ordered: $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_m \geq 0$

U of size $N \times m$ with orthogonal columns

and V orthogonal, of size $m \times m$

Classification

PCA (2)

Dimensionality reduction

Framework

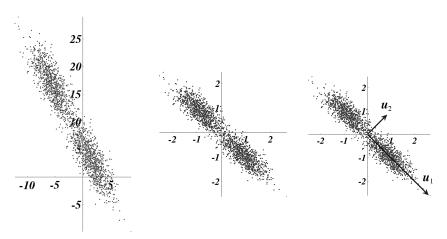
Linear projections

Non-linear projections

Mappings

Conclusion

The "*principal components*" are the columns of $\overline{M} V$ (or of V)



Classification

Dimensionalit reduction

Framework

Linear projections

Non-linear projections

Conclusion

Projection in a low dimension space:

PCA (3)

$$\widetilde{M} = U_q \Lambda_q V_q^t$$

with q < m and X_q matrices reduced to only the q first singular values

 \widetilde{M} is the best approximation of rank q of \overline{M} .

"better approximation" w.r.t several criteria:

 L_2 norm, biggest variance (trace and determinant of the corvariance matrix), Frobenius norm, ...

This means that the subspace of the first q principal components is the best linear approximation of dimension q of the data, "best" in the sense of the distance between the original data points and their projection.

Classification

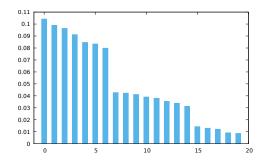
Dimensionality reduction

- Framework
- Linear projections
- Non-linear projections

- **>** sometimes imposed by the application (e.g. for visualization q = 2 or 3)
- otherwise: make use of the spectrum:

PCA (4): how to choose dimension q?

simple: choose *q* where there is a "big step" (a.k.a. "elbow") in $\lambda_i / \sum_j \lambda_j$ plot (a.k.a. "Cattell's scree plot" or "explained variance"):



advanced: see:

Tom Minka, Automatic choice of dimensionality for PCA, NIPS, 2000. https://tminka.github.io/papers/pca/

Classification

Dimensionality reduction

Linear projections

Non-linear projections Mappings

Conclusion

Simple and efficient approximation method using sub-spaces (i.e. linear manifolds)

Weaknesses:

PCA (4)

- ① linear method (precisely what makes it easy to use!)
- ② since the methods maximizes the (co)variance, it is strongly dependant on the measure units used for the features

In practice, except when the variance is *really* what has to be maximized, the data are renormalized before: it is then the correlation matrix which is decomposed rather than the (co)variance.

Classification

Dimensionality reduction Framework Linear projections

"Projection Pursuit"

Conclusion

Linear projection methods on a low dimension space (1, 2 ou 3) but maximizing another criterion than (co)variance.

No analytic solution: numerical optimization (iteration and local convergence)

 \Rightarrow The criterion has to be easily comptutable

Several possible criteria:

entropy, dispersion, higher momenta (> 2), divergence to normal distribution, ...

Classification

Dimensionality reduction

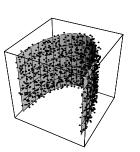
Framework

Linear projections

Non-linear projections

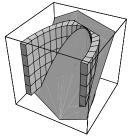
Mappings

Conclusion



Linear vs. non-linear

PCA:





non-linear method:



Textual Data Analysis - 40 / 44

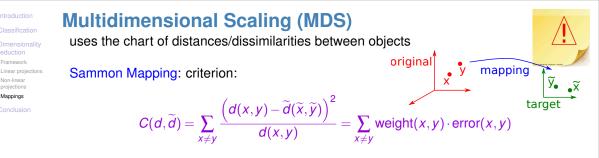
Classification

Dimensionality reduction Framework Linear projections **Non-linear Methods**

projections Mappings Conclusion

Non-linear

- "principal curve" [Hastie & Stuetzle 89]
- ACC (neural net) [Demartines 94]
- Non-linear PCA (NLPCA) [Karhunen 94]
- Kernel PCA [Schölkopf, Smola, Müller 97]
- Gaussian process latent variable models (GPLVM) [Lawrence 03]



where *d* is the dissimilarity in the original object space, and \tilde{d} the dissimilarity in the projection space (e.g. Euclidian)

more accurate representation of objects that are close

More recent alternatives:

- t-SNE (t-Distributed Stochastic Neighbor Embedding)
 [L.J.P. van der Maaten and G.E. Hinton; Visualizing High-Dimensional Data Using t-SNE; Journal of Machine Learning Research 9(Nov):2579-2605, 2008.]
- UMAP (Uniform Manifold Approximation and Projection for Dimension Reduction) [L. McInnes, Healy J., N. Saul and L. Grossberger; UMAP: Uniform Manifold Approximation and Projection; Journal of Open Source Software 3(29):861 (2018).]

Dimensionality reduction

Keypoints

- Many classification/clustering techniques (coming from different fields)
 Know their main characteristics, criteria
 Know at least two methods (e.g. Naive Bayes and K-means), that could be useful as baseline in any case.
- A priori choice of "the best method" is not easy:
 well define what you are looking for, means (time, samples, ...) you have access to
- ► It's even more difficult for Textual Data ⇒ preprocessing is really essential (lemmatization, parsing, ...)
- Pay attention to use a proper methodolgy: good evaluation protocol, statistical tests, ...
- Classification/Clustering and Projection methods are complementary in (Textual) Data Analysis
- Use several representation/classification criteria
- Visualization: Focus on usefulness first: What does it bring/shows to the user? How is it useful? Pay attention not overwhelming the user...

ction	Defense
	References

Dimensionalit reduction

- F. Sebastiani, Machine learning in automated text categorization, ACM Comput. Surv, 34(1): 1-47, 2002.
- C. Bishop, Pattern Recognition and Machine Learning, springer, 2006.
- B.D. Ripley, Pattern recognition and Neural Networks, Cambridge University Press, 1996.
- ▶ V. Vapnik, *The Nature of Statistical Learning Theory*, Springer, 2000.
- B. Schölkopf & A. Smola, *Learning with Kernels*, MIT Press, 2002.

