Deep Learning for Natural Language Processing

Antoine Bosselut

EPFL

Natural Language Processing

Enabling
Human-Machine
\section*{Collaboration}
Search Engines
Dialogue Agents
Text Generation

Accelerating Human-Human Communication

Machine Translation

Text Summarization

Information Extraction

LUMINOSO

Machine Translation

Conversational Systems

© alexa prize

Propel Al forward. Push yourself further.

Question Answering

who is the president of switzerland?
Q All \quad ? Images 国 News \odot Maps \square Videos ! More

About $415^{\circ} 000^{\circ} 000$ results (0.82 seconds)

Guy Parmelin

The President of the Swiss Confederation in 2021 is Guy Parmelin from the canton of Vaud. He was elected on 9 December 2020. The President's department in 2021 is the Federal Department of Economic Affairs, Education and Research EAER
https://www.admin.ch , gov , start) federal-presidency
Presidential year 2021

Text Generation

AN
Can you give me a two-day itinerary for a weekend trip to Paris ? Please don't include more than three activities per day

Day 1:

1. Visit the Eiffel Tower - Start your day with the iconic symbol of Paris, the Eiffel Tower. Take a stroll around the Champ de Mars and enjoy the views from the tower
2. Explore the Louvre Museum - After lunch, head to the Louvre Museum and admire the world-famous artwork such as the Mona Lisa and the Venus de Milo.
3. Stroll along the Seine River - In the evening, take a romantic stroll along the Seine River and enjoy the Parisian atmosphere.

Day 2 :

1. Visit Notre-Dame Cathedral - Start your day by visiting one of the most famous Gothic cathedrals in the world, Notre-Dame Cathedral.
2. Explore the Marais neighborhood - After lunch, explore the Marais neighborhood, known for its historical architecture, trendy boutiques, and restaurants.
3. Enjoy a Cabaret Show - In the evening, enjoy a cabaret show at the famous Parisian venue, the Moulin Rouge, and end your trip with a memorable experience.

Next few weeks!

- Today: Deep Learning for Natural Language Processing
- Next week: Neural Text Generation
- Final week: Modern NLP \& Ethical Implementation of NLP

Today's Outline

- Introduction
- Section 1 - Neural NLP \& Word Embeddings
- Section 2 - Recurrent Neural Networks for Sequence Modeling
- Section 3 - Attentive Neural Modeling with Transformers
- Exercise Session: Attention in Transformer Language Models

Part 1: Neural Embeddings

Section Outline

- Review: sparse word vector representations
- New: Building our first neural classifier
- New: Learning dense word vector representations - CBOW \& Skipgram

A simple NLP model

- How do we represent natural language sequences for NLP problems?

I really enjoyed the movie we watched on Saturday!

A simple NLP model

- How do we represent natural language sequences for NLP problems?

Question

What words should we model as vectors?

Choosing a vocabulary

- Language contains many words (e.g., ~600,000 in English)
- What about other tokens: Capitalisation? Accents? Typos!? Words in other languages!? In other scripts!? Emojis !? Unicode !?
- Millions of potential unique tokens! Most rarely appear in our training data (Zipfian distribution)
- Model has limited capacity

Choosing a vocabulary

- Language contains many words (e.g., ~600,000 in English)
- What about other tokens: Capitalisation? Accents? Typos!? Words in other languages!? In other scripts!? Emojis !? Unicode !?
- Millions of potential unique tokens! Most rarely appear in our training data (Zipfian distribution)
- Model has limited capacity
- How should we select which tokens we want our model to process?
- CS-552: Modern NLP Week 13 - Tokenisation!
- For now, initialize a vocabulary V of tokens that we can represent as a vector
- Any token not in this vocabulary V is mapped to a special $<U N K>$ token (e.g., unknown).

Question

How should we model a word as a vector?

Sparse Word Representations

- Define a vocabulary V

$$
w_{i} \in\{0,1\}^{V}
$$

- Each word in the vocabulary is represented by a sparse vector
- Dimensionality of sparse vector is size of vocabulary (e.g., thousands, possibly millions)

1	[$0 . . .00001 \ldots 000]$
really	[$0 \ldots 1 \ldots 0000000]$
enjoyed	[$0 \ldots \ldots 000010 \ldots 00]$
the	$\left[\begin{array}{llllllllll}0 & . . & 0 & 1 & 0 & 0 & 0\end{array}\right.$
movie	[$0 \ldots 0000000 \ldots 1$]
$!$	[1 ... 00000000000$]$

Word Vector Composition

- To represent sequences, beyond words, define a composition function over sparse vectors

I really enjoyed the movie!	$\rightarrow \quad[1 \ldots 11001 \ldots 01]$	Simple Counts
I really enjoyed the movie! \longrightarrow [$0.01 \ldots 0.10 .100 .001 \ldots 00.5$]		
		eighted by pus Statistics .g., TF-IDF)

Many others...

Problem

With sparse vectors, similarity is a function of common words!
How do you learn learn similarity between words?

$$
\begin{aligned}
& \text { enjoyed } \longrightarrow \quad[0 \ldots 0001 \ldots 00] \\
& \text { loved } \longrightarrow \quad\left[\begin{array}{llllllll}
0 & \ldots & 1 \ldots & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \operatorname{sim}(\text { enjoyed, loved })=0
\end{aligned}
$$

Embeddings Goal

How do we train semantics-encoding embeddings of words?

Dense Word Vectors

- Represent each word as a high-dimensional*, real-valued vector
- *Low-dimensional compared to V-dimension sparse representations, but still usually $\mathrm{O}\left(10^{2}-10^{3}\right)$

- Similarity of vectors represents similarity of meaning for particular words

A simple NLP model

- For each sequence S, we have a corresponding sequence of embeddings X

A simple NLP model

- For each sequence S, we have a corresponding sequence of embeddings X

$$
S_{1}=\text { I really enjoyed the movie we watched on Saturday! }
$$

- Embeddings $x_{t} \in X$ are indexed from shared embedding dictionary \mathbb{E} for all items in vocabulary V

A simple NLP model

- For each sequence S, we have a corresponding sequence of embeddings X

Question

What should we use as a model?

A simple NLP model

- Our model modifies and / or composes these word embeddings to formulate a representation that allows it to predict the correct label

A simple NLP model

- Our model modifies and / or composes these word embeddings to formulate a representation that allows it to predict the correct label
- Recurrent neural networks (RNNs) - Today!
- RNN variants (LSTM, GRU, etc.) - Today!
- Transformer - Today!

A simple NLP model

Notation: Typically, we represent the output of a model as h (or o).

We composed our embeddings into a different representation!

Sum-pool

\uparrow

$S=1$ really enjoyed the movie we watched on Saturday!

Question

How do we convert the output of our model to a prediction?

Predicting the label

Predicting the label

Use h_{T} as the input features to a classification algorithm!

Learn using backpropagation: compute gradients of loss with respect to initial embeddings X

Learn embeddings that allow you to do the task successfully!

$$
X=\left\{x_{0}, x_{1}, \ldots, x_{T}\right\}
$$

$S=1$ really enjoyed the movie we watched on Saturday!

Question

What could be a better way to learn word embeddings?

"You shall know a word by the company it keeps"

-J.R. Firth, 1957

Context Representations

Solution:

Rely on the context in which words occur to learn their meaning

Context is the set of words that occur nearby

I really enjoyed the ___ we watched on Saturday!
The ___ growled at me, making me run away.
I need to go to the \qquad to pick up some dinner.

Foundation of distributional semantics

Learning Word Embeddings

- Many options, huge area of research, but three common approaches
- Word2vec - Continuous Bag of Words (CBOW)
- Learn to predict missing word from surrounding window of words
- Word2vec - Skip-gram
- Learn to predict surrounding window of words from given word
- GloVe
- Not covered today

Continuous Bag of Words (CBOW)

- Predict the missing word from a window of surrounding words

Continuous Bag of Words (CBOW)

- Predict the missing word from a window of surrounding words

$$
\max P(\text { movie } \mid \text { enjoyed, the, we, watched })
$$

$$
\max P\left(w_{t} \mid w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}\right)
$$

$$
\max P\left(w_{t} \mid\left\{w_{x}\right\}_{x=t-2}^{x=t+2}\right)
$$

Continuous Bag of Words (CBOW)

- Predict the missing word from a window of surrounding words

$$
\begin{array}{cc}
P\left(w_{t} \mid\left\{w_{x}\right\}_{x=t-2}^{x=t+2}\right)=\operatorname{softmax}\left(\mathbf{U} \sum_{\substack{x=t-2 \\
x \neq t}}^{t+2} \mathbf{w}_{x}\right) \\
\mathbf{w}_{x} \in \mathbb{R}^{1 \times d} & \mathbf{U} \in \mathbb{R}^{d \times V} \\
\text { Colo } & \text { Proiection }
\end{array}
$$

Softmax Function

- The softmax function generates a probability distribution from the elements of the vector it is given

Continuous Bag of Words (CBOW)

- Predict the missing word from a window of surrounding words

$$
\begin{array}{cc}
P\left(w_{t} \mid\left\{w_{x}\right\}_{x=t-2}^{x=t+2}\right)=\operatorname{softmax}\left(\mathbf{U} \sum_{\substack{x=t-2 \\
x \neq t}}^{t+2} \mathbf{w}_{x}\right) \\
\mathbf{w}_{x} \in \mathbb{R}^{1 \times d} & \mathbf{U} \in \mathbb{R}^{d \times V} \\
\text { Colo } & \text { Proiection }
\end{array}
$$

Continuous Bag of Words (CBOW)

$$
P\left(w_{t} \mid\left\{w_{x}\right\}_{x=t-2}^{x=t+2}\right)=\operatorname{softmax}\left(\mathbf{U} \sum_{\substack{x=t-2 \\ x \neq t}}^{t+2} \mathbf{w}_{x}\right)
$$

movie

- Model is trained to maximise the probability of the missing word
- For computational reasons, the model is typically trained to minimise the negative log probability of the missing word
- Here, we use a window of $\mathbf{N}=\mathbf{2}$, but the window size is a hyperparameter
- For computational reasons, a hierarchical softmax used to compute distribution

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word
 $\max P($ enjoyed, the, we, watched \mid movie $)$ $\max P\left(w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2} \mid w_{t}\right)$

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word
 $\max P($ enjoyed, the, we, watched \mid movie $)$

$$
\max P\left(w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2} \mid w_{t}\right)
$$

$$
\max \log P\left(w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2} \mid w_{t}\right)
$$

$$
\max \left(\log P\left(w_{t-2} \mid w_{t}\right)+\log P\left(w_{t-1} \mid w_{t}\right)\right.
$$

$$
\left.+\log P\left(w_{t+1} \mid w_{t}\right)+\log P\left(w_{t+2} \mid w_{t}\right)\right)
$$

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word
Context:

$$
P\left(w_{x} \mid w_{t}\right)=\operatorname{softmax}\left(\mathbf{U} \mathbf{w}_{t}\right)
$$

$$
\mathbf{w}_{t} \in \mathbb{R}^{1 \times d}
$$

Skip-gram

- We can also learn embeddings by predicting the surrounding context from a single word

- Model is trained to minimise the negative log probability of the surrounding words
- Here, we use a window of $\mathbf{N}=\mathbf{2}$, but the window size is a hyperparameter to set
- Typically, set large window ($\mathbf{N}=\mathbf{1 0}$), but randomly select $i \in[1, N]$ as dynamic window size so that closer words contribute more to learning

Question

What is the major conceptual difference between the CBOW and Skipgram methods for training word embeddings?

Skip-gram vs. CBOW

- Question: Do you expect a difference between what is learned by CBOW and Skipgram methods?

Example

CBOW

Skip-gram

```[ ] top_sg = skipgram.wv.most_similar('cut', topn=10) print(tabulate(top_sg, headers=["Word", "Similarit```	
Word	Similarity
crosswise	0.72921
score	0.702693
slice	0.696898
crossways	0.680091
1/2-inch-thick	0.678496
diamonds	0.671814
diagonally	0.670319
lengthwise	0.665378
cutting	0.66425
wise	0.656825

## Recap

- Neural NLP: Words are vectors!
- Word embeddings can be learned in a self-supervised manner from large quantities of raw text
- Two algorithms: Continuous Bag of Words (CBOW) and Skip-gram


## Resources

- word2vec: https://code.google.com/archive/p/word2vec/
- GloVe: https://nlp.stanford.edu/projects/glove/
- FastText: https://fasttext.cc/
- Gensim: https://radimrehurek.com/gensim/

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the Public Domain Dedication and License vi.o whose full text can be found at: http://www.opendatacommons.org/licenses/pddl//iol.
- Wikipedia 2014 + Gigaword 5 (6B tokens, 400 K vocab, uncased, 50d, 100d, 200d, \& 300d vectors, 822 MB download): glove.6B.zip
- Common Crawl (42B tokens, 1.9 M vocab, uncased, 300 d vectors, 1.75 GB download): glove. 42 B . 300 od .zip
- Common Crawl ( 840 B tokens, 2.2 M vocab, cased, 300 d vectors, 2.03 GB download): glove. 840 O 300d.zip
- Twitter ( 2 B tweets, 27 B tokens, 1.2 M vocab, uncased, $25 \mathrm{~d}, 50 \mathrm{~d}$, 100 d , \& 200 d vectors, 1.42 GB download): glove.twitter. $27 \mathrm{~B} . \mathrm{zip}$
- Ruby script for preprocessing Twitter data


## References

- Firth, J.R. (1957). A Synopsis of Linguistic Theory, 1930-1955.
- Mikolov, T., Chen, K., Corrado, G.S., \& Dean, J. (2013a). Efficient Estimation of Word Representations in Vector Space. International Conference on Learning Representations.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., \& Dean, J. (2013b). Distributed Representations of Words and Phrases and their Compositionality. ArXiv, abs/1310.4546.
- Pennington, J., Socher, R., \& Manning, C.D. (2014). GloVe: Global Vectors for Word Representation. Conference on Empirical Methods in Natural Language Processing.
- Bojanowski, P., Grave, E., Joulin, A., \& Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the association for computational linguistics.
- Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., \& Joulin, A. (2018). Advances in pre-training distributed word representations. International Conference on Language Resources and Evaluation.


# Deep Learning for Natural Language Processing 

Antoine Bosselut

## EPFL



## Part 2: Recurrent Neural

Networks for Sequence Modeling

## Section Outline

- Background: Language Modeling, Feedforward Neural Networks, Backpropagation
- Content - Models: Recurrent Neural Networks, Encoder-Decoders
- Content - Algorithms: Backpropagation through Time, Vanishing Gradients


## Language Modeling

- Given a subsequence, predict the next word: The cat chased the $\qquad$


## Fixed Context Language Models

- Given a subsequence, predict the next word: The cat chased the $\qquad$

$$
P(y)=\operatorname{softmax}\left(b_{o}+\mathbf{W}_{o} \tanh \left(b_{h}+\mathbf{W}_{h} x\right)\right)
$$

mouse


## Fixed Context Language Models

- Given a subsequence, predict the next word:

The starving cat frantically chased the elusive $\qquad$ -


## Problem

Fixed context windows limit language modelling capacity
How can we extend to arbitrary length sequences?

## Recurrent Neural Networks

- Solution: Recurrent neural networks - NNs with feedback loops



## Unrolling the RNN

Unrolling the RNN across all time steps gives full computation graph


Allows for learning from entire sequence history, regardless of length

## Unrolling the RNN



## Classification

- Classifier is just an output projection followed by a softmax!

$$
\begin{array}{cc}
\text { Binary } & \text { Multi-class } \\
P(y)=\sigma\left(W_{o} z_{T}\right) & P(y)=\mathbf{\operatorname { s o f t m a x }}\left(W_{o} z_{T}\right)
\end{array}
$$



## Question

> Why would you use the output of the last recurrent unit as the one to predict a label?

## Classical RNN: Elman Network



## Backpropagation Review: FFNs



## Backpropagation Review: FFNs



$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.) \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0}
\end{gathered}
$$

## Backpropagation Review: FFNs



$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.) \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
= \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0}
\end{gathered}
$$

## Backpropagation Review: FFNs



$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.) \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0} \\
\text { Depends on label } y
\end{gathered}
$$

## Backpropagation Review: FFNs



$$
\begin{gathered}
\mathscr{L}(\hat{y}, y)=y \log P(\hat{y})+(1-y) \log P(1-\hat{y}) \\
\hat{y}=\phi_{o}(u) \\
u=w_{1}^{o} \times \phi_{12}(.)+w_{2}^{o} \times \phi_{22}(.)+w_{3}^{o} \times \phi_{32}(.) \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0} \\
\text { Depends on label } y
\end{gathered}
$$

## Backpropagation Review: FFNs

$$
\begin{aligned}
& \frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
& \frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{11}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}, y)} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0} \\
& =\frac{\partial \mathscr{y}}{\partial u} \frac{\partial \hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{12}(v)}{\partial \phi_{o}(u)} \frac{\partial \phi_{12}(v)}{\partial v} \frac{\partial v}{\partial \phi_{11}^{0}(.)} \frac{\partial \phi_{12}(v)}{\partial v} w_{11}^{\ell=1}
\end{aligned}
$$

## Backpropagation Review: FFNs

$$
\begin{aligned}
& \begin{array}{l}
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{11}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}^{0}(v)} \frac{\partial \phi_{12}}{\partial v} \\
=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0} \frac{\partial \phi_{12}(v)}{\partial v} w_{11}^{\ell=1}
\end{array} \\
& \begin{array}{l}
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{12}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}(.)} \\
\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \phi_{11}(.)}=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} \frac{\partial \hat{y}}{\partial u} \frac{\partial u}{\partial \phi_{12}^{0}(v)} \frac{\partial \phi_{12}}{\partial v} \\
=\frac{\partial \mathscr{L}(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \phi_{o}(u)}{\partial u} w_{1}^{0} \frac{\partial \phi_{12}(v)}{\partial v} w_{11}^{\ell=1}
\end{array}
\end{aligned}
$$

## Backpropagation Review: FFNs

## Question

How would we extend backpropagation to a recurrent neural network?

## Recall

- RNN can be unrolled to a feedforward neural network
- Depth of feedforward neural network depends on length of the sequence



## Backpropagation through Time

$$
z_{t}=\sigma\left(W_{z h} h_{t}+b_{z}\right)
$$

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$



## Backpropagation through Time

$$
z_{t}=\sigma\left(W_{z h} h_{t}+b_{z}\right)
$$

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$

$$
\begin{array}{cc}
v=W_{z h} h_{t}+b_{z} & z_{t}=\sigma(v) \\
u=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} & h_{t}=\sigma(u) \\
\frac{\partial z_{t}}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} \frac{\partial v}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} W_{z h}
\end{array}
$$



## Backpropagation through Time

$$
z_{t}=\sigma\left(W_{z h} h_{t}+b_{z}\right)
$$

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$

$$
\begin{array}{ll}
v=W_{z h} h_{t}+b_{z} & z_{t}=\sigma(v) \\
u=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} & h_{t}=\sigma(u)
\end{array}
$$

$$
\frac{\partial z_{t}}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} \frac{\partial v}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} W_{z h}
$$



$$
\frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} W_{h h}
$$

## Backpropagation through Time

$$
z_{t}=\sigma\left(W_{z h} h_{t}+b_{z}\right)
$$

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$

$$
\begin{array}{ll}
v=W_{z h} h_{t}+b_{z} & z_{t}=\sigma(v) \\
u=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} & h_{t}=\sigma(u)
\end{array}
$$

$$
\begin{gathered}
\frac{\partial z_{t}}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} \frac{\partial v}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} W_{z h} \\
\frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} W_{h h}
\end{gathered}
$$



$$
\frac{\partial z_{t}}{\partial h_{t-1}}=\frac{\partial z_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial h_{t-1}}
$$

## Backpropagation through Time

$$
z_{t}=\sigma\left(W_{z h} h_{t}+b_{z}\right)
$$

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$

$$
\begin{array}{ll}
v=W_{z h} h_{t}+b_{z} & z_{t}=\sigma(v) \\
u=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} & h_{t}=\sigma(u)
\end{array}
$$

$$
\frac{\partial z_{t}}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} \frac{\partial v}{\partial h_{t}}=\frac{\partial \sigma(v)}{\partial v} W_{z h}
$$

00000

$$
\frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} W_{h h}
$$



$$
\frac{\partial z_{t}}{\partial h_{t-1}}=\frac{\partial z_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(v)}{\partial v} \frac{\partial v}{\partial h_{t}} \frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=\frac{\partial \sigma(v)}{\partial v} W_{z h} \frac{\partial \sigma(u)}{\partial u} W_{h h}
$$

## Backpropagation through Time

$$
z_{t}=\sigma\left(W_{z h} h_{t}+b_{z}\right)
$$

$$
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
$$

$$
\begin{array}{ll}
v_{t}=W_{z h} h_{t}+b_{z} & z_{t}=\sigma\left(v_{t}\right) \\
u_{t}=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} & h_{t}=\sigma\left(u_{t}\right)
\end{array}
$$

00000

$$
\frac{\partial z_{t}}{\partial h_{t}}=\frac{\partial \sigma\left(v_{t}\right)}{\partial v_{t}} \frac{\partial v_{t}}{\partial h_{t}}=\frac{\partial \sigma\left(v_{t}\right)}{\partial v_{t}} W_{z h}
$$

$$
\frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma\left(u_{t}\right)}{\partial u_{t}} \frac{\partial u_{t}}{\partial h_{t-1}}=\frac{\partial \sigma\left(u_{t}\right)}{\partial u_{t}} W_{h h}
$$



$$
\frac{\partial h_{t-1}}{\partial h_{t-2}}=\frac{\partial \sigma\left(u_{t-1}\right)}{\partial u_{t-1}} \frac{\partial u_{t-1}}{\partial h_{t-2}}=\frac{\partial \sigma\left(u_{t-1}\right)}{\partial u_{t-1}} W_{h h}
$$

$$
\frac{\partial z_{t}}{\partial h_{t-1}}=\frac{\partial z_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}}=\frac{\partial \sigma\left(v_{t}\right)}{\partial v_{t}} W_{z h} \frac{\partial \sigma\left(u_{t}\right)}{\partial u_{t}} W_{h h} \frac{\partial \sigma\left(u_{t-1}\right)}{\partial u_{t-1}} W_{h h}
$$

## Backpropagation through Time

$$
\begin{gathered}
z_{t}=\sigma\left(W_{z h} h_{t}+b_{z}\right) \\
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right)
\end{gathered}
$$

$$
\begin{array}{ll}
v_{t}=W_{z h} h_{t}+b_{z} & z_{t}=\sigma\left(v_{t}\right) \\
u_{t}=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h} & h_{t}=\sigma\left(u_{t}\right)
\end{array}
$$

00000

$$
\frac{\partial z_{t}}{\partial h_{t}}=\frac{\partial \sigma\left(v_{t}\right)}{\partial v_{t}} \frac{\partial v_{t}}{\partial h_{t}}=\frac{\partial \sigma\left(v_{t}\right)}{\partial v_{t}} W_{z h}
$$

$$
\frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma\left(u_{t}\right)}{\partial u_{t}} \frac{\partial u_{t}}{\partial h_{t-1}}=\frac{\partial \sigma\left(u_{t}\right)}{\partial u_{t}} W_{h h}
$$



$$
\frac{\partial h_{t-1}}{\partial h_{t-2}}=\frac{\partial \sigma\left(u_{t-1}\right)}{\partial u_{t-1}} \frac{\partial u_{t-1}}{\partial h_{t-2}}=\frac{\partial \sigma\left(u_{t-1}\right)}{\partial u_{t-1}} W_{h h}
$$

$$
\frac{\partial z_{t}}{\partial h_{t-1}}=\frac{\partial z_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}}=\frac{\partial \sigma\left(v_{t}\right)}{\partial v_{t}} W_{z h} \frac{\partial \sigma\left(u_{t}\right)}{\partial u_{t}} W_{h h} \frac{\partial \sigma\left(u_{t-1}\right)}{\partial u_{t-1}} W_{h h}
$$

Note that these are

## Backpropagation through time

<-"..." Gradient flow
mouse
$\longrightarrow$ Output flow


## Vanishing Gradients

- Learning Problem: Long unrolled networks will crush gradients that backpropagate to earlier time steps

$$
\begin{gathered}
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right) \quad \frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=W_{h h^{\prime}}^{\partial u}, \\
u=W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}
\end{gathered}
$$

## Backpropagation through time

$$
\frac{\partial h_{t}}{\partial h_{t-1}}=\frac{\partial \sigma(u)}{\partial u} \frac{\partial u}{\partial h_{t-1}}=W_{h h_{1}^{l}}^{\stackrel{1}{n} \partial \sigma(u)!}
$$

## $\longrightarrow$ Output flow

00000


## Backpropagation through time



## Issue with Recurrent Models

- Multiple steps of state overwriting makes it challenging to learn longrange dependencies.

They tuned, discussed for a moment, then struck up a lively jig. Everyone joined in, turning the courtyard into an even more chaotic scene, people now dancing in circles, swinging and spinning in circles, everyone making up their own dance steps. I felt my feet tapping, my body wanting to move. Aside from writing, I've always loved dancing .

- Nearby words should affect each other more than farther ones, but RNNs make it challenging to learn any long-range interactions


## Gated Recurrent Neural Networks

- Use gates to avoid dampening gradient signal every time step

$$
\begin{array}{cc}
h_{t}=\sigma\left(W_{h x} x_{t}+W_{h h} h_{t-1}+b_{h}\right) & h_{t}=h_{t-1} \odot \mathbf{f}+\text { func }\left(x_{t}\right) \\
\text { Elman Network } & \text { Gated Network Abstraction }
\end{array}
$$

- Gate value $\mathbf{f}$ computes how much information from previous hidden state moves to the next time step —>0 $\mathbf{~ f}<1$
- Because $h_{t-1}$ is no longer inside the activation function, it is not automatically constrained, reducing vanishing gradients!


## Long Short Term Memory (LSTM)

Gates:


## Question

## How can we use recurrent neural networks in practice?

Machine Translation involves more than estimating the probability next word; requires generating a full translation of a given context into another language

## Encoder-Decoder Models

- Encode a sequence fully with one model (encoder) and use its representation to seed a second model that decodes another sequence (decoder)
- Decoder is autoregressive, generates one word at a time (like an LM)



## Encoder-Decoder Models

- e.g., machine translation
- Generate the words of the translated sequence of text



## Encoder-Decoder Models

- Input doesn't need to be text

Monkey

- e.g., image captioning


Photo credit: J Hovenstine Studios

- Generate words of image description



## Bidirectional Encoders

- Decoder needs to be unidirectional (can't know the future...)
- Encoder sequence representation augmented by encoding in both directions



## Bidirectional Encoders

- Decoder needs to be unidirectional (can't know the future...)
- Encoder sequence representation augmented by encoding in both directions



## Other Resources of Interest

- Approaches for maintaining state and avoiding vanishing gradients
- Long Short-Term Memory (Hochreiter and Schmidhuber, 1997):
- Gated Recurrent Units (Cho et al., 2014):
- LSTM: A Search Space Odyssey (Greff et al., 2015)
- Examine 5000 different modifications to LSTMs - none significantly better than original architecture
- Only basics presented here today! Many offshoots of these techniques!


## Recap

- Early neural language models (and n-gram models) suffer from fixed context windows
- Recurrent neural networks can theoretically learn to model an unbounded context length using back propagation through time (BPTT)
- Practically, however, vanishing gradients stop many RNN architectures from learning long-range dependencies
- RNNs (and modern variants) remain useful for many sequence-tosequence tasks


## References

- Bengio, Y., Ducharme, R., Vincent, P., \& Janvin, C. (2003). A Neural Probabilistic Language Model. Journal of machine learning research.
- Elman, J.L. (1990). Finding Structure in Time. Cogn. Sci., 14, 179-211.
- Schuster, M., \& Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681.
- Hochreiter, S., \& Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9, 1735-1780.
- Cho, K., Merrienboer, B.V., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., \& Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. Conference on Empirical Methods in Natural Language Processing.
- Sutskever, I., Vinyals, O., \& Le, Q.V. (2014). Sequence to Sequence Learning with Neural Networks. NIPS.
- Vinyals, O., Toshev, A., Bengio, S., \& Erhan, D. (2014). Show and tell: A neural image caption generator. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3156-3164.
- Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., \& Schmidhuber, J. (2015). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28, 2222-2232.


# Deep Learning for Natural Language Processing 

Antoine Bosselut

## EPFL



## Part 3: Attentive Neural

 Modeling with Transformers
## Section Outline

- Background: Long-range Dependency Modeling
- Content: Attention, Self-Attention, Multi-headed Attention, Transformer Blocks, Transformers
- Exercise Session: Visualizing Transformer Attention


## Issue with Recurrent Models

- Multiple steps of state overwriting makes it challenging to learn longrange dependencies.

They tuned, discussed for a moment, then struck up a lively jig. Everyone joined in, turning the courtyard into an even more chaotic scene, people now dancing in circles, swinging and spinning in circles, everyone making up their own dance steps. I felt my feet tapping, my body wanting to move. Aside from writing, I've always loved dancing .

- Nearby words should affect each other more than farther ones, but RNNs make it challenging to learn any long-range interactions


## Toy Example

- The model sees 4 extra tokens: "m'", "appelle", "Antoine", <START> before generating the "I" correspond to "Je"



## Toy Example

- The model sees 4 extra tokens: "m'", "appelle", "Antoine", <START> before generating the "I" correspond to "Je"


## Attentive Encoder-Decoder Models

- Recall: At each encoder time step, there is an output of the RNN!



## Attentive Encoder-Decoder Models



- Recall: At each encoder time step, there is an output of the RNN!
- Idea: Use the output of the Decoder LSTM to compute an attention (i.e., a mixture) over all the $h_{t}^{e}$ outputs of the encoder LSTM
- Intuition: focus on different parts of the input at each time step


## What is attention?

- Attention is a weighted average over a set of inputs

$$
h_{t}^{e}=\text { encoder output hidden states }
$$

- How should we compute this weighted average?



## Attention Function

- Compute pairwise similarity between each encoder hidden state and decoder hidden state ("idea of what to decode")

$h_{t}^{e}=$ encoder output hidden states
Also known as a "keys"

$$
\begin{array}{cc}
h_{t}^{d}= & \text { decoder output hidden state } \\
\text { Also known as a "query" } & \\
0 & 0 \\
0 & \\
\hline
\end{array}
$$

$h_{1}^{e} h_{2}^{e} h_{3}^{e} h_{4}^{e}$

## Attention Function

- Compute pairwise similarity between each encoder hidden state and decoder hidden state ("idea of what to decode")

$$
\begin{array}{cc}
h_{t}^{e}=\text { encoder output hidden states } & h_{t}^{d}=\text { decoder output hidden state } \\
\text { Also known as a "keys" } & \text { Also known as a "query" }
\end{array}
$$

$$
\begin{aligned}
& h_{1}^{e} \quad h_{1}^{d} \\
& h_{2}^{e} \quad h_{1}^{d} \\
& h_{3}^{e} \quad h_{1}^{d} \\
& h_{4}^{e} \quad h_{1}^{d}
\end{aligned}
$$

- We have a single query vector for multiple key vectors


## Attention Function

## Attention Function

## Formula

## Multiplicative

Linear

## Scaled Dot Product

$$
\begin{gathered}
a=h^{e} \mathbf{W} h^{d} \\
a=v^{T} \phi\left(\mathbf{W}\left[h^{e} ; h^{d}\right]\right)
\end{gathered}
$$

$$
a=\frac{\left(\mathbf{W} h^{e}\right)^{T}\left(\mathbf{U} h^{d}\right)}{\sqrt{d}}
$$

## Attention Function

- Compute pairwise similarity between each encoder hidden state and decoder hidden state ("idea of what to decode")

$h_{1}^{e} \quad h_{1}^{d}$

$h_{2}^{e} \quad h_{1}^{d}$

$h_{3}^{e} \quad h_{1}^{d}$
- Convert pairwise similarity scores to probability distribution (using softmax!) over encoder hidden states and compute weighted average:

$$
\text { Softmax! } \alpha_{t}=\frac{e^{a_{t}}}{\sum_{j} e^{a_{j}}} \rightarrow \frac{\square}{\alpha_{t}} \rightarrow \tilde{h}_{1}^{d}=\sum_{t=1}^{T} \alpha_{t} h_{t}^{e} \quad \begin{aligned}
& \text { Here } h_{t}^{e} \text { is known } \\
& \text { as the "value" }
\end{aligned}
$$

## Attentive Encoder-Decoder Models



- Intuition: $\tilde{h}_{1}^{d}$ contains information about hidden states that got high attention
- Typically, $\tilde{h}_{1}^{d}$ is concatenated (or composed in some other manner) with $h_{1}^{d}$ (the original decoder state) before being passed to the output layer
- Output layer predicts the most likely output token $\hat{y}_{1}$


## Attentive Encoder-Decoder Models



## Attentive Encoder-Decoder Models



## Attention Recap

- Main Idea: Decoder computes a weighted sum of encoder outputs
- Compute pairwise score between each encoder hidden state and initial decoder hidden state

$$
h_{t}^{e}=\text { encoder output hidden states } \quad h_{t}^{d}=\text { decoder initial hidden state }
$$

- Many possible functions for computing scores (dot product, bilinear, etc.)
- Temporal Bottleneck Fixed! Direct connection between decoder and ALL encoder states


## Question

## Do any other inefficiencies remain in our sequence to sequence pipelines?

## Encoder is still Recurrent

- Encoder: Recurrent functions can't be parallelized because previous state needs to be computed to encode next one

- Problem: Encoder hidden states must still be computed in series


## Encoder is still Recurrent

- Encoder: Recurrent functions can't be parallelized because previous state needs to be computed to encode next one

- Problem: Encoder hidden states must still be computed in series

Who can think of a task where this might be a problem?

Solution:
Transformers!

## Full Transformer

- Made up of encoder and decoder
- Both encoder and decoder made up of multiple cascaded transformer blocks
- slightly different architecture in encoder and decoder transformer blocks
- Blocks generally made up multi-headed attention layers (self-attention) and feedforward layers
- No recurrent computations!

Encode sequences with self-attention


## Self-Attention Toy Example

- Original Idea: Use decoder hidden state to compute attention distribution over encoder hidden states
- New Idea: Could we use encoder hidden states to compute attention distribution over themselves?
- Ditch recurrence and compute encoder state representations in parallel!

$$
h_{t}^{\ell}=\text { encoder hidden state at time step } \mathrm{t} \text { at layer } \ell
$$

$\uparrow$	$\uparrow$	$\uparrow$	$\uparrow$
$h_{1}^{0}$	$h_{2}^{0}$	$h_{3}^{0}$	$h_{4}^{0}$
"key"	"Key"	"query"	"key"

## Recap: Attention with RNNs

- Compute pairwise similarity between each encoder hidden state and decoder hidden state ("idea of what to decode")

$$
a_{1}=f\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array},, \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

$$
h_{1}^{e} \quad h_{1}^{d}
$$

"key" "query"

"key"'"query"

"key"" "query"

- Convert pairwise similarity scores to probability distribution (using softmax!) over encoder hidden states and compute weighted average:

$$
\text { Softmax! } \alpha_{t}=\frac{e^{a_{t}}}{\sum_{j} e^{a_{j}}} \rightarrow \frac{\square}{\alpha_{t}} \rightarrow \tilde{h}_{1}^{d}=\sum_{t=1}^{T} \alpha_{t} h_{t}^{e} \quad \begin{aligned}
& \text { Here } h_{t}^{e} \text { is known } \\
& \text { as the "value" }
\end{aligned}
$$

## Self-Attention Toy Example

- For a particular encoder time step, compute pairwise score between this hidden state (the query) and the other encoder hidden states



## Self-Attention Toy Example

$$
h_{t}^{\ell}=\text { encoder hidden state at time step } t \text { at layer } \ell
$$



$$
a_{s t}=\frac{\left(\mathbf{W}^{Q} h_{s}^{\hbar}\right)^{T}\left(\mathbf{W}^{K} h_{t}^{t}\right)}{\sqrt{d}}
$$

Compute pairwise scores

$$
\alpha_{s t}=\frac{e^{a_{s t}}}{\sum_{j} e^{a_{s j}}}
$$

Get attention distribution

$$
\tilde{h}_{s}^{\ell}=\sum_{t=1}^{T} \alpha_{s t}\left(\mathbf{W}^{V} h_{t}^{\ell}\right)
$$

Attend to values to get weighted sum

## Self-Attention Toy Example

$$
h_{t}^{\ell}=\text { encoder hidden state at time step } t \text { at layer } \ell
$$


$\{1, \ldots, t, \ldots, T\}$
includes s!

$$
a_{s t}=\frac{\left(\mathbf{W}^{Q} h_{s}^{\ell}\right)^{T}\left(\mathbf{W}^{K} h_{t}^{\ell}\right)}{\sqrt{d}}
$$

Compute pairwise scores

$$
\alpha_{s t}=\frac{e^{a_{s t}}}{\sum_{j} e^{a_{s j}}}
$$

Get attention distribution

$$
\tilde{h}_{s}^{\ell}=\sum_{t=1}^{T} \alpha_{s t}\left(\mathbf{W}^{V} h_{t}^{\ell}\right)
$$

Attend to values to get weighted sum

## Self-Attention Toy Example

Compute pairwise scores

$$
a_{s t}=\frac{\left(\mathbf{W}^{Q} h_{s}^{t}\right)^{T}\left(\mathbf{W}^{K} h_{t}^{\ell}\right)}{\sqrt{d}}
$$

Get attention distribution

$$
\alpha_{s t}=\frac{e^{a_{s t}}}{\sum_{j} e^{a_{s j}}}
$$

bution


Attend to values to get weighted sum

$$
\tilde{h}_{s}^{\ell}=\sum_{t=1}^{T} \alpha_{s t}\left(\mathbf{W}^{V} h_{t}^{\ell}\right)
$$

## Self-Attention Toy Example



For each attention computation, every element is a key and value, and one element is a query

## Self-Attention Toy Example



For each attention computation, every element is a key and value, and one element is a query

## Self-Attention Toy Example

Compute pairwise scores
$\mathbf{a}=\frac{\left(\mathbf{W}^{Q} q\right)\left(\mathbf{W}^{K} K\right)}{\sqrt{d}}$
Get attention distribution $\alpha=\operatorname{softmax}(\mathbf{a})$

Attend to values to get weighted sum $\tilde{h}^{\ell}=W^{O} \alpha\left(V \mathbf{W}^{V}\right)$

$$
\text { "query" } q=h_{s}^{\ell}
$$

$$
\underset{\text { "keys" }}{ }=V=\left\{h_{t}^{\ell}\right\}_{t=0}^{T}
$$

For each attention computation, every element is a key and value, and one element is a query

## Self-Attention Toy Example

- Every token is a query! Recompute self-attention value for each position in the sequence

$\tilde{h}_{2}^{1}$
$\tilde{h}_{3}^{1}$
$\tilde{h}_{4}^{1}$


$$
\begin{aligned}
& \tilde{h}_{1}^{1}=\boldsymbol{A t t e n t i o n}\left(h_{1}^{0},\left\{h_{t}^{0}\right\}_{t=0}^{t=3}\right) \\
& \tilde{h}_{1}^{2}=\operatorname{Attention}\left(h_{2}^{0},\left\{h_{t}^{0}\right\}_{t=0}^{t=3}\right) \\
& \tilde{h}_{1}^{3}=\boldsymbol{A t t e n t i o n}\left(h_{3}^{0},\left\{h_{t}^{0}\right\}_{t=0}^{t=3}\right) \\
& \tilde{h}_{1}^{4}=\boldsymbol{A t t e n t i o n}\left(h_{4}^{0},\left\{h_{t}^{0}\right\}_{t=0}^{t=3}\right)
\end{aligned}
$$

## Question

What are two advantages of self-attention over recurrent models?

## Self-Attention Recap



- Computed in parallel - no previous time step computation needed for the next one
- No long-term dependencies - direct connection between all time-steps in sequence


## Multi-Headed Self-Attention

- Project $\mathrm{V}, \mathrm{K}, \mathrm{Q}$ into H sub-vectors where H is the number of "heads"

$$
\mathbf{a}_{i}=\frac{\left(\mathbf{W}_{i}^{Q} q\right)\left(\mathbf{W}_{i}^{K} K\right)}{\sqrt{d / H}}
$$

- Compute attention weights separately for each sub-vector

$$
\alpha_{i}=\operatorname{softmax}\left(\mathbf{a}_{i}\right) \quad \tilde{h}_{i}^{\ell}=\alpha\left(V \mathbf{W}_{i}^{V}\right)
$$

- Concatenate sub-vectors for each head and project

$$
\tilde{h}^{\ell}=W^{O}\left[\tilde{h}_{0}^{\ell} ; \ldots ; \tilde{h}_{i}^{\ell} ; \ldots ; \tilde{h}_{H}^{\ell}\right]
$$



## Transformer Block

- Self-attention is the main innovation of the popular transformer model!
- Each transformer block receives as input the outputs of the previous layer at every time step
- Each block is composed of a multi-headed attention, a layer normalisation, a feedforward network, and another layer normalisation
- There are residual connections before every normalisation layer



## Full Transformer

- Full transformer encoder is multiple cascaded transformer blocks



## Recurrent models provided word order information

- N


## Does self-attention provide word order information?

- Transformer decoder (right) similar to encoder
- second attention layer to compute weighted average of encoder states before FFN



## Position Embeddings

- Self-attention provides no word order information
- Computes weighted average over set of vectors
- Word order is pretty crucial to understanding language
- How do we fix this?
- Add an additional embedding to the input word that represents a position in the sequence

(shifted right)


## Position Embeddings

- Self-attention provides no word order information
- Computes weighted average over set of vectors
- Word order is pretty crucial to understanding language
- How do we fix this?
- Add an additional embedding to the input word that represents a position in the sequence

- Early position embeddings encoded a sinusoid function that was offset by a phase shift proportional to sequence position
- In practice, easiest is to learn position embeddings from scratch


## Other Resources of Interest

- The Annotated Transformer
- https://nlp.seas.harvard.edu/2018/04/03/attention.html
- The Illustrated Transformer
- https://jalammar.github.io/illustrated-transformer/
- Only basics presented here today! Many modifications to initial transformers exist


## Recap

- Temporal Bottleneck: Vanishing gradients stop many RNN architectures from learning long-range dependencies
- Parallelisation Bottleneck: RNN states depend on previous time step hidden state, so must be computed in series
- Attention: Direct connections between output states and inputs (solves temporal bottleneck)
- Self-Attention: Remove recurrence, allowing parallel computation
- Modern Transformers use attention as primary function, but require position embeddings to capture sequence order


## References

- Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q.N., Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., \& Fernández, R. (2016). The LAMBADA dataset: Word prediction requiring a broad discourse context. ArXiv, abs/1606.06031.
- Bahdanau, D., Cho, K., \& Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. CoRR, abs/1409.0473.
- Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., \& Polosukhin, I. (2017). Attention is All you Need. ArXiv, abs/1706.03762.

