CS-431 Hands On Lexical Level

J.-C. Chappelier
M. Rajman

v. $20220928-1$

QUESTION I

(adapted from Spring 2018 quiz 1)
For this question, one or more assertions can be correct. Tick only the correct assertion(s). There will be a penalty for wrong assertions ticked.

For a 3-grams of characters model, which of the following terms are parameters directly estimated from the learning corpus?
[] P (cat)
[] $P(\mathrm{c} \mid \mathrm{at})$
[] $P($ at $\mid \mathrm{c})$
[] $P(\mathrm{t} \mid \mathrm{ca})$
[] $P($ cta $)$
[] $P($ tac $)$
[] P (cats)
[] $P(\mathrm{ca})$

QUESTION II

Consider the following lexicon, which also indicates the probability of a word:

```
debt 0.04
deft 0.03
dust 0.04
exit 0.08
next 0.05
test 0.07
text 0.05
```

Using a simple probabilitic spelling error corrector (as simple as proposed in the lecture), order the candidates proposed to correct the OoV "dext".

QUESTION III

(from Fall 2018 quiz 1)
For this question, we ask you to tick one and only one of the proposed answers. If there is more than one single tick, your answers will not be considered at all.

In a language identification system using 4 -grams Markov model, what is the probability of "chats" to be French (F), assuming that ${ }^{1}$;

$$
\begin{array}{l|l|l|l}
P(F \mid \text { chat })=2 \cdot 10^{-5} & P(F \mid \text { cha })=3 \cdot 10^{-6} & P(\text { cha } \mid F)=5 \cdot 10^{-5} & P(\text { hat } \mid \mathrm{c}, F)=7 \cdot 10^{-6} \\
P(F \mid \text { hats })=13 \cdot 10^{-4} & P(F, \mathrm{t} \mid \text { cha })=17 \cdot 10^{-7} & P(\mathrm{t} \mid \text { cha }, F)=19 \cdot 10^{-4} & P(\text { ats } \mid \mathrm{h}, F)=2 \cdot 10^{-7} \\
P(F, \mathrm{~s} \mid \text { hat })=5 \cdot 10^{-8} & P(\mathrm{~s} \mid \text { hat }, F)=11 \cdot 10^{-3} & \\
& & & \\
P(\mathrm{ch} \mid F)=11 \cdot 10^{-5} & P(\mathrm{a} \mid \text { ch }, F)=3 \cdot 10^{-4} & P(\mathrm{t} \mid \text { ha, } F)=7 \cdot 10^{-8} & P(\mathrm{~s} \mid \text { at }, F)=13 \cdot 10^{-3}
\end{array}
$$

Answer:

[] $2 \times 13 \times 10^{-9}$
[] $19 \times 11 \times 10^{-7}$
[] $3 \times 2 \times 13 \times 10^{-15}$
[] $5 \times 7 \times 2 \times 10^{-18}$
[] $3 \times 17 \times 5 \times 10^{-21}$
[] $11 \times 3 \times 7 \times 13 \times 10^{-20}$
[] $5 \times 19 \times 11 \times 10^{-12}$
[] another value (

QUESTION IV

(from Spring 2019 quiz 1)
From a corpus of N occurences of m different tokens:
(1) What is the exact number of occurrences of 4-grams (of tokens) present in the corpus?
(2) How many different 4 -grams (values) could you possibly have?
(3) Only G different 4 -grams (values) are indeed observed. What is the probability of the others:
(a) using Maximum-Likelihood estimation?
(b) using "additive smoothing" with a Dirichlet prior with parameter (α, \cdots, α), of appropriate dimension, where α is a real-number between 0 and 1?
(4) If a 4-gram has a probability estimated to be p with Maximum-Likelihood estimation, what would be its probability if estimated using "additive smoothing" with a Dirichlet prior with parameter (α, \cdots, α) ?

[^0]
[^0]: ${ }^{1}$ Most of those values are, of course, fake and incompatible.

