

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE – LAUSANNE POLITECNICO FEDERALE – LOSANNA SWISS FEDERAL INSTITUTE OF TECHNOLOGY – LAUSANNE

Faculté Informatique et Communication Introduction to Natural Language Processing (Ms; CS-431) Chappelier, J.-C. & Rajman, M.

CS-431 Hands On Lexical Level Solutions

J.-C. Chappelier M. Rajman

v. 20220928 – 1

QUESTION I

(adapted from Spring 2018 quiz 1)

For this question, *one or more* assertions can be correct. Tick only the correct assertion(s). There will be a penalty for wrong assertions ticked.

For a 3-grams of characters model, which of the following terms are *parameters* directly estimated from the learning corpus?

[✔] P(cat)	[] $P(at c)$	[🖌] P(cta)	[] P(cats)
[] $P(c at)$	[] $P(t ca)$	[🖌] P(tac)	[] P(ca)

- Don't forget P(cta), nor P(tac): all 3-grams are estimated (even if the estimation is 0, which in this case may not even be the case: e.g. *dictate*)
- Bigrams are <u>not</u> parameters; their estimation comes from the one of 3-grams (sum). For instance:

$$P(\mathsf{ca}) = \sum_{x} P(\mathsf{ca}x)$$

• P(x|yz) are not parameters either. They are computed *from/with* the parameters. For instance:

$$P(\mathbf{t}|\mathbf{ca}) = \frac{P(\mathbf{cat})}{\sum_{x} P(\mathbf{cax})}$$

[4 pt]

Barème et remarques pour la correction : Right column (no tick outside 2nd col.): 1 pt; each correct tick: 1pt; wrong ticks: -0.5 each.

QUESTION II

Consider the following lexicon, which also indicates the probability of a word:

debt 0.04 deft 0.03 dust 0.04 exit 0.08 next 0.05 test 0.07 text 0.05

Using a simple probabilitic spelling error corrector (as simple as proposed in the lecture), order the candidates proposed to correct the OoV "*dext*".

First order by number of errors, then by decreasing word probability:

next, text (equal) debt deft exit (at distance 2) test dust

QUESTION III

(from Fall 2018 quiz 1)

For this question, we ask you to tick *one and only one* of the proposed answers. If there is more than one single tick, your answers will not be considered at all.

In a language identification system using 4-grams Markov model, what is the probability of "*chats*" to be French (F), assuming that¹:

$$\begin{split} P(F \mid \text{chat}) &= 2 \cdot 10^{-5} \\ P(F \mid \text{cha}) &= 13 \cdot 10^{-4} \\ P(F \mid \text{cha}) &= 13 \cdot 10^{-4} \\ P(F, \textbf{t} \mid \text{cha}) &= 17 \cdot 10^{-7} \\ P(F, \textbf{s} \mid \text{hat}) &= 5 \cdot 10^{-8} \\ P(c\textbf{h} \mid F) &= 11 \cdot 10^{-5} \\ \end{split} \end{split} \begin{array}{l} P(c\textbf{h} \mid \textbf{c}, F) &= 3 \cdot 10^{-6} \\ P(f, \textbf{s} \mid \textbf{hat}) &= 5 \cdot 10^{-8} \\ P(f, \textbf{s} \mid \textbf{hat}) &= 5 \cdot 10^{-8} \\ P(f \mid \textbf{hat}, F) &= 11 \cdot 10^{-3} \\ P(f \mid \textbf{hat}, F) &= 7 \cdot 10^{-8} \\ P(f \mid \textbf{hat}, F) &= 13 \cdot 10^{-3} \\ P(f \mid \textbf{hat}, F) &= 13 \cdot 10^{-3} \\ P(f \mid \textbf{hat}, F) &= 7 \cdot 10^{-8} \\ P(f \mid \textbf{hat}, F) &= 13 \cdot 10^{-3} \\ P(f \mid \textbf$$

Answer:

[4 pt]

[5 pt]

¹Most of those values are, of course, fake and incompatible.

$[\checkmark] 5 \times 19 \times 11 \times 10^{-12}$	[] another value ()
[] $3 \times 17 \times 5 \times 10^{-21}$	[] $11 \times 3 \times 7 \times 13 \times 10^{-20}$	
[] $3 \times 2 \times 13 \times 10^{-15}$	[] $5 \times 7 \times 2 \times 10^{-18}$	
[] $2 \times 13 \times 10^{-9}$	[] $19 \times 11 \times 10^{-7}$	

It's indeed P(chats | F) we are talking about: indeed when one says "the probability of (some value) x ...", she indeed means P(x), in the sense that the sum over the set of alternative values to x (including x itself) is 1.

So in this case: "the probability of *chats*..." means P(chats...) in the sense that it has to sum up to 1 on all the alternatives to "chats". It's thus indeed P(chats | F) and not P(F | chats) (the later does not at all sum up to one on alternatives of "*chats*"!)

P(F | chats) would be phrased something like "the probability of the writing language to be French when we read "*chats*".

Thus: $P(\text{chats} | F) = P(\text{cha} | F) \times P(t | \text{cha}, F) \times P(s | \text{hat}, F).$

When done in exam, many students missed the initial $P(\operatorname{cha} | F)$; some others didn't realize that $P(\operatorname{cha} | F)/P(\operatorname{cha} | F)$ is indeed $P(t | \operatorname{cha}, F)$ (or similarly, some wanted to have $P(\operatorname{chat} | F)$, which is indeed $P(\operatorname{cha} | F) \times P(t | \operatorname{cha}, F)$).

QUESTION IV

(from Spring 2019 quiz 1)

From a corpus of N occurences of m different tokens:

① What is the exact number of occurrences of 4-grams (of tokens) present in the corpus?

N-3

(or if you want to be even more precise: 0 if N < 4)

⁽²⁾ How many different 4-grams (values) could you possibly have?

 m^4

(or if you want to be even more precise: $\min(m^4, N-3)$)

③ Only G different 4-grams (values) are indeed observed. What is the probability of the others:

3

(a) using Maximum-Likelihood estimation?

[5 pt]

(b) using "additive smoothing" with a Dirichlet prior with parameter (α, \dots, α) , of appropriate dimension, where α is a real-number between 0 and 1?

(4) If a 4-gram has a probability estimated to be p with Maximum-Likelihood estimation, what would be its probability if estimated using "additive smoothing" with a Dirichlet prior with parameter (α, \dots, α) ?

$$\frac{(N-3)\,p+\alpha}{N-3+\alpha\,m^4}$$