CS-431 Hands On Lexical Level Solutions

J.-C. Chappelier M. Rajman

v. 20220928 - 1

QUESTION I

(adapted from Spring 2018 quiz 1)
For this question, one or more assertions can be correct. Tick only the correct assertion(s). There will be a penalty for wrong assertions ticked.

For a 3-grams of characters model, which of the following terms are parameters directly estimated from the learning corpus?

- Don't forget $P(\mathrm{cta})$, nor $P(\mathrm{tac})$: all 3-grams are estimated (even if the estimation is 0 , which in this case may not even be the case: e.g. dictate)
- Bigrams are not parameters; their estimation comes from the one of 3-grams (sum). For instance:

$$
P(\mathrm{ca})=\sum_{x} P(\mathrm{ca} x)
$$

- $P(x \mid y z)$ are not parameters either. They are computed from/with the parameters. For instance:

$$
P(\mathrm{t} \mid \mathrm{ca})=\frac{P(\mathrm{cat})}{\sum_{x} P(\mathrm{ca} x)}
$$

Barème et remarques pour la correction :

Right column (no tick outside 2 nd col.): 1 pt ; each correct tick: 1 pt ; wrong ticks: -0.5 each.

QUESTION II

Consider the following lexicon, which also indicates the probability of a word:

```
debt 0.04
deft 0.03
dust 0.04
exit 0.08
next 0.05
test 0.07
text 0.05
```

Using a simple probabilitic spelling error corrector (as simple as proposed in the lecture), order the candidates proposed to correct the OoV "dext".

First order by number of errors, then by decreasing word probability:
next, text (equal)
debt
deft
exit (at distance 2)
test
dust

QUESTION III

(from Fall 2018 quiz 1)
For this question, we ask you to tick one and only one of the proposed answers. If there is more than one single tick, your answers will not be considered at all.

In a language identification system using 4 -grams Markov model, what is the probability of "chats" to be French (F), assuming thar

$P(F \mid$ chat $)=2 \cdot 10^{-5}$	$P(F \mid$ cha $)=3 \cdot 10^{-6}$	$P(\mathrm{cha} \mid F)=5 \cdot 10^{-5}$	$P($ hat $\mid \mathrm{c}, F)=7 \cdot 10^{-6}$
$P(F \mid$ hats $)=13 \cdot 10^{-4}$	$P(F, \mathrm{t} \mid$ cha $)=17 \cdot 10^{-7}$	$P(\mathrm{t} \mid$ cha,$F)=19 \cdot 10^{-4}$	$P($ ats $\mid \mathrm{h}, F)=2 \cdot 10^{-7}$
$P(F, \mathrm{~s} \mid$ hat $)=5 \cdot 10^{-8}$	$P(\mathrm{~s} \mid$ hat,$F)=11 \cdot 10^{-3}$		
$P(\mathrm{ch} \mid F)=11 \cdot 10^{-5}$	$P(\mathrm{a} \mid$ ch,$F)=3 \cdot 10^{-4}$	$P(\mathrm{t} \mid$ ha,$F)=7 \cdot 10^{-8}$	$P(\mathrm{~s} \mid$ at,$F)=13 \cdot 10^{-3}$

Answer:

[^0]| [] $2 \times 13 \times 10^{-9}$ | $\left[\right.$] $19 \times 11 \times 10^{-7}$ |
| :--- | :--- |
| [] $3 \times 2 \times 13 \times 10^{-15}$ | $\left[\right.$] $5 \times 7 \times 2 \times 10^{-18}$ |
| [] $3 \times 17 \times 5 \times 10^{-21}$ | [] $11 \times 3 \times 7 \times 13 \times 10^{-20}$ |
| $\left[\right.$ C] $5 \times 19 \times 11 \times 10^{-12}$ | [] another value (|

It's indeed $P($ chats $\mid F)$ we are talking about: indeed when one says "the probability of (some value) x...", she indeed means $P(x)$, in the sense that the sum over the set of alternative values to x (including x itself) is 1 .

So in this case: "the probability of chats..." means P (chats...) in the sense that it has to sum up to 1 on all the alternatives to "chats". It's thus indeed P (chats $\mid F)$ and not $P(F \mid$ chats) (the later does not at all sum up to one on alternatives of "chats"!)
$P(F \mid$ chats $)$ would be phrased something like "the probability of the writing language to be French when we read "chats".

Thus: $P($ chats $\mid F)=P($ cha $\mid F) \times P(\mathrm{t} \mid$ cha,$F) \times P(\mathrm{~s} \mid$ hat,$F)$.
When done in exam, many students missed the initial $P($ cha $\mid F)$; some others didn't realize that $P($ chat $\mid F) / P($ cha $\mid F)$ is indeed $P(\mathrm{t} \mid$ cha, $F)$ (or similarly, some wanted to have $P($ chat $\mid F)$, which is indeed $P($ cha $\mid F) \times P(\mathrm{t} \mid$ cha, $F)$).

QUESTION IV

(from Spring 2019 quiz 1)

From a corpus of N occurences of m different tokens:
(1) What is the exact number of occurrences of 4-grams (of tokens) present in the corpus?

$$
N-3
$$

(or if you want to be even more precise: 0 if $N<4$)
(2) How many different 4 -grams (values) could you possibly have?
(or if you want to be even more precise: $\min \left(m^{4}, N-3\right)$)
(3) Only G different 4 -grams (values) are indeed observed. What is the probability of the others:
(a) using Maximum-Likelihood estimation?
(b) using "additive smoothing" with a Dirichlet prior with parameter (α, \cdots, α), of appropriate dimension, where α is a real-number between 0 and 1?

$$
\frac{\alpha}{N-3+\alpha m^{4}}
$$

(4) If a 4-gram has a probability estimated to be p with Maximum-Likelihood estimation, what would be its probability if estimated using "additive smoothing" with a Dirichlet prior with parameter (α, \cdots, α) ?

$$
\frac{(N-3) p+\alpha}{N-3+\alpha m^{4}}
$$

[^0]: ${ }^{1}$ Most of those values are, of course, fake and incompatible.

