
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE – LAUSANNE

POLITECNICO FEDERALE – LOSANNA

SWISS FEDERAL INSTITUTE OF TECHNOLOGY – LAUSANNE

School of Computer and Communication Sciences

CS-431: Introduction to Natural Language Processing

Chappelier, J.-C. & Rajman, M.

CS–431: INTRODUCTION TO
NATURAL LANGUAGE PROCESSING

Exercises with solutions
(version 202310–2)

Contents
1 NLP levels 2

2 Evaluation 3

4 Tokenization/Lexicons/n-grams 8

5 Part-of-Speech tagging 12

7 Text Classification 19

8 Information Retrieval 26

9 Lexical Semantics 35

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

1 NLP levels

Exercise I.1

A company active in automatic recognition of hand-written documents needs to improve the quality
of their recognizer. This recognizer produces sets of sequences of correct English words, but some of
the produced sequences do not make any sense. For instance the processing of a given hand-written
input can produce a set of transcriptions like: "A was salmon outer the does", "It was a afternoon
nice sunny", and "I Thomas at mice not the spoon".

What is wrong with such sentences? NLP techniques of what level might allow the system to select
the correct one(s)? What would be the required resources?

Solution

Those sentences are not “grammatically” (syntactically) correct. It should be filtered out at the
syntactic level using a (phrase-structure) grammar.

2/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

2 Evaluation

Exercise II.1

➀ Give some arguments justifying why evaluation is especially important for NLP. In particular,
explain the role of evaluation when a corpus-based approach is used.

➁ Many general evaluation metrics can be considered for various NLP tasks. The simplest one
is accuracy.

Give several examples of NLP tasks for which accuracy can be used as an evaluation metric.
Justify why.

In general, what property(ies) must an NLP task satisfy in order to be evaluable through accu-
racy?

➂ Consider a Part-of-Speech tagger1 producing the following output:

The/Determiner program/Noun can/Noun deal/Noun with/Preposition three/Number
types/Verb of/Preposition inputs/Noun ./Punctuation

(using your own knowledge of general English,) Compute the accuracy of the tagger.

What do you think of the performance of this system with respect to the State of the Art?
Is this conclusion reliable?

➃ What is the formal relation between accuracy and the error rate? In which case would you
recommend to use the one or the other?

➄ Consider the following “breaking news scanning system”:
A company receives a continuous stream of information messages (newswires); each time
a new message arrives, its average textual similarity score with respect to the stored collec-
tion of previously received messages is computed. If this average similarity is below a given
threshold, the message is considered “breaking news” and is automatically distributed to the
company personnel.

The company has carried out an evaluation of the system in place, which produced the follow-
ing average figures:

• one message out of 1000 is considered to be “breaking news” by the system;

• 30% of the claimed “breaking news” messages are evaluated as not new by human
judges;

• the system is missing one truly “breaking news” message every 1000 messages pro-
cessed.

Use the provided figures to compute the accuracy of the system.

Is accuracy a good metric in this case? Justify your answer, and, possibly, propose some
alternative performance score(s) and compute the corresponding value(s).

1Part-of-Speech tagging, which will be studied in more details later in the semester, consists in adding each word a
("Part-of-Speech") tag corresponding to its syntactic role within the sentence:.

3/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

➅ Another very general evaluation framework concerns this kind of NLP tasks where the goal
of the system is to propose a set of outputs among which some might turn to be correct,
while other might not (e.g. Information Retrieval (IR)). In this type of situation, the standard
evaluation metrics are the Precision and the Recall.

Give the formal definition of Precision and Recall and indicate some examples of NLP tasks
(other than IR) that can be evaluated with the Precision/Recall metrics.

➆ Consider the following Precision/Recall curves

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

DSIR (alpha=0)
Hybrid (alpha=0.5)

VS (alpha=1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

P
ré

c
is

io
n

Rappel

Collection TIME, EDR + tf

lemmes
lemmes+concepts

concepts directs
CRM

What conclusions can one derive from such curves? Provide a detailed interpretation of the
results.

➇ It is often desirable to be able to express the performance of an NLP system in the form of one
single number, which is not the case with Precision/Recall curves.

Indicate what score can be used to convert a Precision/Recall performance into a unique num-
ber. Give the formula for the corresponding evaluation metric, and indicate how it can be
weighted.

➈ Give well chosen examples of applications that can be evaluated with the single metric derived
from Precision/Recall and illustrate:

• a situation where more weight should be given to Precision;

• a situation where more weight should be given to Recall.

Solutions

➀ a few hints:

• there is no theoretical proof nor unique optimal solution in NLP

• so as to have an objective (not subjective) quantitative (not qualitative) measure

• it helps clarifying, even specifying, the objectives to be reached

• allow to monitor variability over time (task shift, for whatever reasons, e.g. change in
vocabulary)

• feed-back loop (propose clues where it can help the best)

4/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

➁ (a) PoS tagging, but also Information Retrieval (IR), Text Classification, Information Extrac-
tion. For the later, accuracy sounds like precision (but it depends on what we actually mean
by “task” (vs. subtask)) .

(b) a reference must be available, “correct” and “incorrect” must be clearly defined

➂ 7/10 (can, deal, types). It seems quite low for such a “simple” task and is indeed below State-
of-the-Art. Any conclusion drawn from such a tiny example is not reliable at all.

➃ (a) err = 1−acc. (b) does not make any sense: they are the same (opposite, actually)

➄ over 10’000 : OK ref KO ref
OK Sys 7 3
KO Sys 10 9980

acc =
7+9980

10000
= 99.87%

No, different priors and risks ; use recall : 7
7+10 = 41%

➅ see lecture/slides

➆ explain what the axis are; the higher the curve the better, ideally (theoretical) top right corner,
curves are decreasing by construction; left corpus is certainly much bigger than the right one
(faster decreasing, very low recall).

➇ F1, or any combination, e.g. weighted averages (Fβ)

➈ Precision is prefered when very large amount of data are available and only a few well choosen
one are enough: we want to have those very early, e.g. Web search

Recall is prefered when have all the correct documents is important (implying that, if we want
to handle them, they are not that many). Typically in legal situations.

Exercise II.2

You have been hired to evaluate an email monitoring system aimed at detecting potential security
issues. The targeted goal of the application is to decide whether a given email should be further
reviewed or not.

➀ Give four standard measures usually considered for the evaluation of such a system? Explain
their meaning. Briefly discuss their advantages/drawbacks.

• accuracy / error rate / "overall performance": number of correct/incorrect over total num-
ber ; adv: simple ; drawback: too simple, does not take unbalancing of classes into
account

• Precision (for one class): number of correctly classified emails over number of emails
classified in that class by the system ; Ignores false negatives ; can be biaised by classi-
fying only very few highly trusted emails

5/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

• Recall / true positive rate: number of correctly classified emails over number of emails
classified in that class by experts (in the referential) ; Ignores false positives ; Can be
biaised by classifying all documents in the most important class

• Area under ROC Curve ; Plot true positive rate vs false positive rates ; not easy to com-
pute ;

• F score: Harmonic mean of precision and recall; balances P and R ; too simple: unary
score for complex situation

• false positive rate

➁ For three of the measures you mentioned in the previous question, what are the corresponding
scores for a system providing the following results:

email e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14
referential C1 C1 C1 C1 C1 C1 C1 C1 C2 C2 C2 C2 C2 C2

system C1 C2 C1 C2 C1 C2 C1 C1 C2 C1 C2 C1 C2 C2

The main point here is to discuss WHAT to compute: we don’t know what neither C1 nor C2
are. So we have to compute either overall score (not very good) or scores FOR EACH class.

The confusion matrix is: system
C1 C2

re
fe

re
nc

e

C1 5 3
C2 2 4

from where we get: accurary=9/14, thus overall error=5/14

P/R for C1: P=5/7 R=5/8

P/R for C2: P=4/7 R=4/6

(note that "overall P and R" does not make any sense and are equal to accuracy)

C1: FPR = 2/7, FNR=3/7 (and vice-versa for C2)

➂ You have been given the results of three different systems that have been evaluated on the same
panel of 157 different emails. Here are the classification errors and their standard deviations:

system 1 system 2 system 3
error 0.079 0.081 0.118

std dev 0.026 0.005 0.004
Which system would you recommend? Why?

system 2: error is first criterion, then for stastistically non signifiant differences in error (which
is the case for system 1 and 2), then min std dev is better (especially with such big difference
as here!)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

system 3
system 2
system 1

6/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

➃ Optional (too advanced for the current version of the course): What should be the minimal
size of a test set to ensure, at a 95% confidence level, that a system has an error 0.02 lower
(absolute difference) than system 3? Justify your answer.

We could consider at least two approaches here: either binomial confidence interval or t-test.

• binomial confidence interval: evaluation of a binary classifier (success or not) follow a
binomial law with parameters (perror,T), where T is the test-set size (157 in the above
question; is it big enough?).
Using normal approximation of the binomial law, the width of the confidence interval

aroung estimated error probability is q(α)

√
p̂(1−p̂)

T , where q(α) is the 1− α

2 quantile (for
a 1−α confidence level) and p̂ is the estimation of perror. We here want this confidence
interval width to be 0.02, and have p̂ = 0.118 (and "know" that q(0.05) = 1.96 from
normal distribution quantile charts); thus we have to solve:

(0.02)2 = (1.96)2 0.118× (1−0.118)
T

Thus T ≃ 1000.

• t-test approach: let’s consider estimating their relative behaviour on each of the test
cases (i.e. each test estimation subset is of size 1). If the new system as an error of 0.098
(= 0.118−0.02), it can vary from system 3 between 0.02 of the test cases (both systems
almost always agree but where the new system improves the results) and 0.216 of the test
cases (the two systems never make their errors on the same test case, so they disagree
on 0.118+ 0.098 of the cases). Thus µ of the t-test is between 0.02 and 0.216. And
s = 0.004 (by assumption, same variance).
Thus t is between 5

√
T and 54

√
T which is already bigger than 1.645 for any T bigger

than 1. So this doesn’t help much.
So all we can say is that if we want to have a (lowest possible) difference of 0.02 we
should have at least 1/0.02 = 50 test cases ;-) And if we consider that we have 0.216
difference, then we have at least 5 test cases...
The reason why these numbers are so low is simply because we here make strong as-
sumptions about the test setup: that it is a paired evaluation. In such a case, having a
difference (0.02) that is 5 times bigger than the standard deviation is always statistically
significant at a 95% level.

7/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

4 Tokenization/Lexicons/n-grams

Exercise IV.1

According to your knowledge of English, split the following sentence into words and punctuation:

M. O’Connel payed $ 12,000 (V.T.A. not included) with his credit card.

Which of these words won’t usually be in a standard lexicon? Justify your answer.

Assuming separators are: whitespace, quote (’), full-stop/period (.), parenthesis,
and that separators a kept as tokens, tokenize the former sentence.

How would you propose to go from tokens to words? (propose concreat implementations)

Solution

words and punctuation: M. O’Connel payed $12,000 (V.T.A. not included) with his credit card .

Usually not in a lexicon because hard to lexicalize (too many hard-to-predict occurrences): O’Connel,
$12,000

“O’Connel” could be in some lexicon of proper names (but not so usual), or recognized by some
NER (Named-Entity Recognizer).

“$12,000” could be in some lexicon making use of regular expressions (e.g. a FSA), but this is also
not so usual unless making use of some (other) NER.

tokens: M . O ’ Connel payed $ 12 , 000 (V . T . A . not included) with his credit
card .

We could go from tokens to words by:

• agglutinating several (consecutive) tokens when the resulting word is in our lexicon

• doing so, it would be good to keep all possible solutions, for instance in the compact form of
a graph/lattice; for instance:

credit card

credit card

8/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

• making use of NERs (check their input format/tokenization rules)

• add our own had-oc rules, e.g. M + period + whitespace + proper name/unknow token with
capital letter −→ proper noun

Exercise IV.2

Consider the following toy corpus:

the cat cut the hat

• How many different bigrams of characters (including whitespace) do you have in that corpus?

• How many occurences do you have in total? (i.e. including repertitions)

• Considering only lowercase alphabetical and whitespace, how many bigrams are possible?

• What are the parameters of a bigram model using the same set of characters (lowercase alpha-
betical and whitespace)?

• What is the probability of the following sequences, if the parameters are estimated using MLE
(maximum-likelihood estimation) on the above corpus (make use of a calculator or even a
short program):

– cutthechat

– cut the chat

Fully justify your answer.

• What is the probability of the same sequences, if the parameters are estimated using Dirichlet
prior with α having all its components equal to 0.05?

Fully justify your answer.

Solution

• there are 12 different bigrams (denoting here the whitespace with ’X’ to better see it): Xc, Xh,
Xt, at, ca, cu, eX, ha, he, tX, th, ut,

• the corpus being 19 characters long, there are 18 bigrams in total. Here are the counts Xc, 2;
Xh, 1; Xt, 1; at, 2; ca, 1; cu, 1; eX, 2; ha, 1; he, 2; tX, 2; th, 2; ut, 1

• 272 = 729 bigrams in total

9/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

• parameters are all the 729 probabilies of the 729 bigrams (’X’ = whitespace): P(XX), P(Xa),
P(Xb), ..., P(aa), P(ab), ..., P(zz).

• Using MLE, the probability of the observed bigram are proportionnal to their number of oc-
curence: Xc: 2/18; Xh: 1/18; Xt: 1/18; at: 2/18; ca: 1/18; cu: 1/18; eX: 2/18; ha: 1/18; he:
2/18; tX: 2/18; th: 2/18; ut: 1/18

and all the other are 0.

Thus the propability of any sequence containing an unseen bigram is 0 (as a product of terms,
at least one of which is 0), which is the case for both sequences (bigram ’ch’ never seen)

• With a Dirichlet prior with parameter α = (0.05, ...,0.05︸ ︷︷ ︸
729 times

) each observed bigram as a extra

0.05 to its count and the denominator is augmented by 729 × 0.05 = 36.45, leading thus
to: Xc: 2.05/54.45; Xh: 1.05/54.45; Xt: 1.05/54.45; at: 2.05/54.45; ca: 1.05/54.45; cu:
1.05/54.45; eX: 2.05/54.45; ha: 1.05/54.45; he: 2.05/54.45; tX: 2.05/54.45; th: 2.05/54.45;
ut: 1.05/54.45

and all the unseen bigrams have a probability of 0.05/54.45;

The probability of the two sequences then becomes (in blue the bigrams seen in the learning
corpus):

P(cutthechat) = P(cu) · P(ut)
P(u)

· P(tt)
P(t)

· P(th)
P(t)

· P(he)
P(h)

· P(ec)
P(e)

· P(ch)
P(c)

· P(ha)
P(h)

· P(at)
P(a)

and

P(u) = ∑
y

P(uy) = P(ut)+26× 0.05
54.45

=
1.05

54.45
+26× 0.05

54.45
=

2.35
54.45

≃ 4.32%

P(c)=∑
y

P(cy)=P(ca)+P(cu)+25× 0.05
54.45

=
1.05
54.45

+
1.05

54.45
+25× 0.05

54.45
=

3.35
54.45

≃ 6.15%

P(t)=∑
y

P(ty)=P(tX)+P(th)+25× 0.05
54.45

=
2.05

54.45
+

2.05
54.45

+25× 0.05
54.45

=
5.35

54.45
≃ 9.83%

and similarly for others.

So we end up with:

P(cutthechat) =
1.05

54.45
· 1.05

2.35
· 0.05

5.35
· 2.05

5.35
· 2.05

4.25
· 0.05

3.35
· 0.05

3.35
· 1.05

4.35
· 2.05

3.35
≃ 4.9×10−10

Regarding the other sequence:

P(cutXtheXchat)

= P(cu) · P(ut)
P(u)

· P(tX)
P(t)

· P(Xt)
P(X)

· P(th)
P(t)

· P(he)
P(h)

· P(eX)
P(e)

· P(Xc)
P(X)

· P(ch)
P(c)

· P(ha)
P(h)

· P(at)
P(a)

=
1.05

54.45
· 1.05

2.35
· 2.05

5.35
· 1.05

5.35
· 2.05

5.35
· 2.05

4.25
· 2.05

3.35
· 2.05

5.35
· 0.05

3.35
· 1.05

4.35
· 2.05

3.35
≃ 6.2×10−8

10/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

Notice however that the two sequences do not have the same length, so their probabilities shall
not be compared without a minimum amount of care. But in this case, since the probability of
the shorter is smaller than the probability of the longer, it’s conclusive: the longer is definitely
the better (since, for instance, any substring of length 10 (=length of the shorther) of the longer
will be more probable than the shorter).

11/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

5 Part-of-Speech tagging

Exercise V.1

What is the tagging of the following sentence
computers process programs accurately

with the following HMM tagger:

(part of) lexicon:

computers N 0.123
process N 0.1
process V 0.2
programs N 0.11
programs V 0.15
accurately Adv 0.789

(part of) transitions:

P(N|V)=0.5 P(N|Adv)=0.12 P(V|Adv)=0.05
P(V|N)=0.4 P(Adv|N)=0.01 P(Adv|V)=0.13
P(N|N)=0.6 P(V|V)=0.05

Solutions

4 choices (it’s a lattice):

computers process programs accurately
N N N Adv

V V

Differences are (skept the common factors):

P(N|N) P(process|N) P(N|N) P(programs|N) P(Adv|N)
P(N|N) P(process|N) P(V|N) P(programs|V) P(Adv|V)
P(V|N) P(process|V) P(N|V) P(programs|N) P(Adv|N)
P(V|N) P(process|V) P(V|V) P(programs|V) P(Adv|V)

i.e.:

0.6 0.1 0.6 0.11 0.01
--> 0.6 0.1 0.4 0.15 0.13 <--MAX

0.4 0.2 0.5 0.11 0.01
0.4 0.2 0.05 0.15 0.13

12/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

Tagging obtained (not corresponding to the one expected by an average English reader ;-)):

computers process programs accurately
N N V Adv

Exercise V.2

We aim at tagging English texts with “Part-of-Speech” (PoS) tags. For this, we consider using the
following model (partial picture):

...some picture...

Explanation of (some) tags:

Tag English expl. Expl. française Example(s)
JJ Adjective adjectif yellow
NN Noun, Singular nom commun singulier cat
NNS Noun, Plural nom commun pluriel cats
PRP$ Possessive Pronoun pronom possessif my, one’s
RB Adverb adverbe never, quickly
VBD Verb, Past Tense verbe au passé ate
VBN Verb, Past Participle participe passé eaten
VBZ Verb, Present 3P Sing verbe au présent, 3e pers. sing. eats
WP$ Possessive wh- pronom relatif (poss.) whose

➀ What kind of model (of PoS tagger) is it? What assumption(s) does it rely on?

➁ What are its parameters? Give examples and the appropriate name for each.

We use the following (part of) lexicon:

adult JJ
adult NN
daughter NN
developed VBD
developed VBN
first JJ
first RB

has VBZ
just RB
my PRP$
programs NNS
programs VBZ
tooth NN
whose WP$

and consider the following sentence:

my daughter whose first adult tooth has just developed programs

13/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

➂ With this lexicon, how many different PoS taggings does this sentence have? Justify your
answer.

➃ What (formal) parameters make the difference in the choice of these different PoS taggings
(for the above model)?

Give the explicit mathematical formulas of these parts that are different.

➄ Assume that the following tagging is produced:

my/PRP$ daughter/NN whose/WP$ first/JJ adult/JJ tooth/NN has/VBZ just/RB developed/VBN
programs/NNS

How is it possible? Give an explanation using the former formulas.

Solutions

➀ This is an HMM of order 1 (Well, the picture is actualy a part of a Markov chain. The "hidden"
part will be provide by the emission probabilities, i.e. the lexicon).

HMM relies on two asumptions (see course): limited lexical contionning (P(wi|...Ci...) = P(wi|Ci))
and limited scope for syntactic dependencies (P(Ci|C1...Ci−1) = P(Ci|Ci−k...Ci−1)).

➁ Its parameters are:

1. initial probabilities: PI(tag)

2. transition probabilities: P(tagi|tagi−1...tagi−k)

3. emission probabilities: P(word|tag)

Exemples: initial: PI(JJ), transition: P(JJ|NN), emission: P(adult|JJ).

➂

my PRP$
daughter NN
whose WP$
first JJ RB
adult JJ NN
tooth NN
has VBZ
just RB
developed VBN VBD
programs NNS VBZ

2x2x2x2=16 possible taggings

Examples:

14/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

my/PRP\$ daughter/NN whose/WP\$ first/JJ adult/JJ tooth/NN has/VBZ
just/RB developed/VBN programs/VBZ

my/PRP\$ daughter/NN whose/WP\$ first/JJ adult/JJ tooth/NN has/VBZ
just/RB developed/VBN programs/NN

➃ Differences are due to two subproducts:

On one hand:
P(X |WP$) ·P(first|X) ·P(Y |X) ·P(adult|Y) ·P(NN|Y)

for X either “JJ” or “RB” and Y either “JJ” of “NN”, and on the other hand:

P(X |RB) ·P(developed|X) ·P(Y |X) ·P(programs|Y)

for X either “VBD” or “VBN” and Y either “NNS” of “VBZ”,

NOTICE:

1. do not forget emision probabilities

2. do not forget the right hand part of each tag, e.g for "adult", not only P(NN|RB) (for instance),
but also P(NN|NN) for the transition to "tooth".

➄ It is possible simply by the fact that the product

P(JJ|WP$)·P(first|JJ)·P(JJ|JJ)·P(adult|JJ)·P(NN|JJ)·P(VBN|RB)·P(developed|VBN)·P(NNS|VBN)

·P(programs|NNS)

is bigger than any other of the products for the same part, which is possible (e.g. each term bigger
than any corresponding other, or even one much bigger than all the other products, etc.)

Exercise V.3

➀ What is the problem addressed by a Part-of-Speech (PoS) tagger?
Why isn’t it trivial? What are the two main difficulties?

➁ Assume that you have to quickly search for the existence of given {word , part-of-speech}
pairs within the set of all the English words associated with their part(s)-of-speech. Which
data structure(s) would you use if memory is an issue?

➂ Assume that the texts to be tagged contain unknown words, which are either capitalized words,
or spelling errors, or simply general common words not seen during the learning. Almost all
capitalized words correspond to proper nouns, and most of the spelling-errors correspond to

15/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

words already in the lexicon (only a few of the spelling errors correspond to words not seen
during the learning).

How would you handle such a situation in a concrete NLP application (that uses a PoS tagger)?
Explicit your solution(s).

➃ Assume that the texts to be tagged contain 1.5% of unknown words and that the performance
of the tagger to be used is 98% on known words.

What will be its typical overall performance in the following two situations:

(a) all unknown words are systematically wrongly tagged?

(b) using the solution you proposed in ➂ is used in a situation where 80% of the unknown
words are capitalized among which 98% are proper nouns, 15% are general common
words not seen during learning, and 5% are spelling-errors, among which 1% corre-
sponds to correct words which were not in the learning set?

Provide both a calculation (a complete formula but not necessarily the final numerical result)
and an explanation.

Solutions

➀ The problem addressed by a PoS tagger is to assign part-of-speech tags (i.e. grammatical
roles) to words within a given context (sentence, text).

This task is not trivial because of lexical ambiguity (words can have multiple grammatical
roles, e.g. can/N can/V) and out-of-vocabulary forms (i.e. unknown words).

Lexical ambiguity is not trivial to handle because it leads to an exponential number of possible
solution w.r.t. the sentence length.

Unknow words are not trivial because we have to decide how to cope with them, which often
involves high level linguistic features (and compromise to be made). This is the role of the
“guesser”.

➁ Finite-State Transducers seems really appropriate for this task under the memory consumption
constraint since they are the optimal representation of paired-regular languages.

Another possible solution, however, could be to build the FSA of words, use it to map words
to numbers and then associate a table of list of PoS tags (maybe also represented in the form
of numbers through another FSA).

It is not clear how the overheads of each implementation will compare one to another in a real
implementation.
(The second propostion being actually one possible implementation for the corresponding
FST).

➂ The first idea is to tag capitalized words as proper nouns.

Then we’d like to cope with spelling errors as much as possible. This is hard in a completely
autonomous manner because there might be several solution of a real spelling errors, but also
there might be some possible correction for unknown words which correspond to correct words

16/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

but unseen during the learning. The idea is thus to use a low threshold for the spelling error
correction and keep all possible tags for all possible solutions in case of ambiguity, leting then
the tagger to disambiguate the tag.

For the rest, the guesser corresponding to the tagger used should be used anyway.

➃ (a) is simple : 1.5% is for sure wrongly tagged. For the rest (100%-1.5%), only 98% are
correctly tagged. So the overall score is 0.985×0.98 ≃ 0.96.

(b) this is less obvious: still we have 0.985× 0.98, but on the remaining 1.5% we cannot be
sure:

• regading capitalized words, we can expect to have 98% correct, thus: 0.015×0.8×0.98

• but for the rest, this really depends on the perfomances/ambiguities in the spelling error
correction and on the performance of the guesser.

This could be summarized as:

1.5% unknown 80% capitalizes 98% proper nouns: OK
2% WRONG

15% unseen: ??
5% spell. err. 99% corrected: 98%?? OK

1%: ??
98.5% known 98%: OK

2% WRONG

Exercise V.4

➀ Consider an HMM Part-of-Speech tagger, the tagset of which contains, among others:
DET, N, V, ADV and ADJ,

and some of the parameters of which are:

P1(a|DET) = 0.1, P1(accurately|ADV) = 0.1, P1(computer|N) = 0.1,
P1(process|N) = 0.095, P1(process|V) = 0.005,
P1(programs|N) = 0.080, P1(programs|V) = 0.020,

P2(Y|X): (for instance P2(N|DET) = 0.55)

Y→
DET N V ADJ ADV

X ↓ DET 0 0.55 0 0.02 0.03
N 0.01 0.10 0.08 0.01 0.02
V 0.16 0.11 0.06 0.08 0.08

ADJ 0.01 0.65 0 0.05 0
ADV 0.08 0.02 0.09 0.04 0.04

and:
P3(DET) = 0.20, P3(N) = 0.06, P3(V) = 0.08, P3(ADV) = 0.07, P3(ADJ) = 0.02.

17/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

(a) How are the propabilities P1, P2 and P3 usually called?
P1: emission

P2: transition

P3: initialization

(b) What are all the possible taggings of the sentence
a computer process programs accurately

a computer process programs accurately
DET N V V ADV

N N

which leads to 4 solutions.

(c) What would be the output of the HMM PoS tagger on the above sentence?
Fully justify your answer.

x y x|N process|x y|x programs|y ADV|y
N N 10 95 10 80 2
V N 8 5 11 80 2
N V 10 95 8 20 8
V V 8 5 6 20 8

Noticing that 80 ·2 = 20 ·8, only the first three enter the game, among which the first is
clerarly the best.
The output will thus be

a computer process programs accurately
DET N N N ADV

18/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

7 Text Classification

Exercise VII.1

In an automated email router of a company, we want to make the distinction between three kind of
emails: technical (about computers), financial, and the rest (“irrelevant”). For this we plan to use a
Naive Bayes approach.

➀ What is the main assumption made by Naive Bayes classifiers? Why is it “Naive”?

We will consider the following three messages:

The Dow industrials tumbled 120.54 to 10924.74, hurt by GM’s sales forecast
and two economic reports. Oil rose to $71.92.

from www.wsj.com/

BitTorrent Inc. is boosting its network capacity as it prepares to become a cen-
tralized hub for legal video content. In May, BitTorrent announced a deal with
Warner Brothers to distribute its TV and movie content via the BT platform. It
has now lined up IP transit for streaming videos at a few gigabits per second

from slashdot.org/

Intel will sell its XScale PXAxxx applications processor and 3G baseband pro-
cessor businesses to Marvell for $600 million, plus existing liabilities. The deal
could make Marvell the top supplier of 3G and later smartphone processors, and
enable Intel to focus on its core x86 and wireless LAN chipset businesses, the
companies say.

from www.linuxdevices.com/

➁ What pre-processing steps (before actually using the Naive Bayes Classifier) do you consider
applying to the input text?

➂ For the first text, give an example of the corresponding output of the pre-processor.

continues on back ☞

19/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

Suppose we have collected the following statistics2 about the word frequencies within the corre-
sponding classes, where “0.00. . .” stands for some very small value:

technical financial irrelevant
$<number> 0.01 0.07 0.05

Dow 0.00. . . 0.08 0.00. . .
GM 0.00. . . 0.03 0.00. . .
IP 0.03 0.00. . . 0.00. . .

Intel 0.02 0.02 0.00. . .
business 0.01 0.07 0.04
capacity 0.01 0.00. . . 0.00. . .
chipset 0.04 0.01 0.00. . .

company 0.01 0.04 0.05

technical financial irrelevant
deal 0.01 0.02 0.00. . .

forecast 0.00. . . 0.03 0.01
gigabit 0.03 0.00. . . 0.00. . .

hub 0.06 0.00. . . 0.01
network 0.04 0.01 0.00. . .

processor 0.07 0.01 0.00. . .
smartphone 0.04 0.04 0.01

wireless 0.02 0.01 0.00. . .

➃ In a typical NLP architecture, where/how would you store this information? Explicit your
answer, e.g. provide an illustrative example.

➄ For each of the above three texts, in what category will it be classified, knowing that on average
50% of the emails happen to be technical, 40% to be financial and 10% to be of no interest.

You can assume that all the missing information is irrelevant (i.e. do not impact the results).

Provide a full explanation of all the steps and computations that lead to your results.

We now want to specifically focus on the processing of compounds such as “network capacity” in
the second text.

➅ How are the compounds handled by a Naive Bayes classifier if no specific pre-processing of
compounds is used?

➆ What changes if the compounds are handled by the NL pre-processor?

Discuss this situation (NL pre-processing handling compounds) with respect to the Naive
Bayes main assumption.

➇ Outline how you would build a pre-processor for compound words.

Solutions

Q2.1 The main assumption is that features/attributes contributing to the likelihood are independant,
conditionnaly to classes:

P(f1... fn|C) = ∏
i

P(fi|C)

2Note that this is only partial information, statistics about other words not presented here have also been collected.

20/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

This is in practice definitely a strong assumption. This is the reason why is is called “Naive”

Q2.2 In text classification, preprocessing is really crutial in order to allow a "good" representation
mainly through proper lexical variability reduction.

Usual NLP steps for reducing lexical variability include: tokenization (removal of punctuation), PoS
tagging, lemmatization and suppression of grammatical ("meaningless") words (stopword, some PoS
tags, low frequencies).

If lemmatization is not possible, stemming could be consisered either.

We could also have a more evolved tokenizer including Entity Recognition (e.g. based on regular
patterns) or even Name Entity Recognition for Proper Nouns.

Q2.3 Lemmatized and with number entity recognition, this could lead to:

Dow industrial tumble <number> <number> hurt GM sale
forecast economic report oil rise \$<number>

If a multi-set representation is even included in the preprocessing (this was not expected as an an-
swer), the output could even be:

(\$<number>,1) (<number>,2) (Dow,1) (GM,1) (economic,1) (forecast,1)
(hurt,1) (industrial,1) (oil,1) (report,1) (rise,1) (sale,1) (tumble,1)

Q2.4 This is a more difficult question than it seems because it actually depends on the representation
choosen for the lexicon. If this representation allows to have several numeric fields associated to
lexical entries, then definitly it should be stored there.

Otherwise some external (I mean out of the lexicon) array would be build, the role of the lexicon
then being to provide a mapping between lexical entries and indexes in these arrays.

The choice of the implementation also highly depends on the size of the vocabulary to be stored (and
also on the timing specifications for this tasks: realtime, off-line, ...)

Anyway this is typically a lexical layer level resource.

Example for the case where a associative memory (whatever it’s implementation) is available:

capacity → 123454 by the lexicon then an array such that ARRAY[1][123454]=0.01

It should be noticed that these probability arrays are very likely to be very sparse. Thus sparse matrix
representations of these would be worth using here.

Q2.5 What make the discrimination between the class are the P(word|textclass) and the priors P(C).
Ideed, the Naive Bayes classifier uses (see lectures):

ArgmaxP(C|w1...wn) = ArgmaxP(C)∏
i

P(wi|C)

As stated out in the question, assuming that all the rest is irrelevant, the first text will have

21/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

technical financial irrelevant
Dow 0.00. . . 0.08 0.00. . .
GM 0.00. . . 0.03 0.00. . .

forecast 0.00. . . 0.03 0.01
$<number> 0.01 0.07 0.05

the maximal product of which is clearly for the second class: “financial”.

For the second text we have:

technical financial irrelevant
network 0.04 0.01 0.00. . .
capacity 0.01 0.00. . . 0.00. . .

hub 0.06 0.00. . . 0.01
deal 0.01 0.02 0.00. . .

gigabit 0.03 0.00. . . 0.00. . .
IP 0.03 0.00. . . 0.00. . .

the maximal product of which is clearly for the first class: “technical.

For the third text:

technical financial irrelevant
Intel 0.02 0.02 0.00. . .

processor 0.07 0.01 0.00. . .
processor 0.07 0.01 0.00. . .
business 0.01 0.07 0.04

$<number> 0.01 0.07 0.05
deal 0.01 0.02 0.00. . .

smartphone 0.04 0.04 0.01
processor 0.07 0.01 0.00. . .

Intel 0.02 0.02 0.00. . .
wireless 0.02 0.01 0.00. . .
chipset 0.04 0.01 0.00. . .

business 0.01 0.07 0.04
company 0.01 0.04 0.05

which could be organized:

22/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

technical financial irrelevant
Intel 0.02 0.02 0.00. . .
Intel 0.02 0.02 0.00. . .

smartphone 0.04 0.04 0.01
processor 0.07 0.01 0.00. . .

$<number> 0.01 0.07 0.05
processor 0.07 0.01 0.00. . .
business 0.01 0.07 0.04
processor 0.07 0.01 0.00. . .
business 0.01 0.07 0.04

deal 0.01 0.02 0.00. . .
wireless 0.02 0.01 0.00. . .
company 0.01 0.04 0.05
chipset 0.04 0.01 0.00. . .

showing that the ∏i P(wi|C) part is the same for the first two classes (and much smaller for “irrele-
vant”)

Thus the prior P(C) will make the decision and this last text is classified as “technical”.

Q2.6 compounds are simply ignored as such by the Naive Bayes and are, due to the “Naive” inde-
pendance assumption, handled as separated tokens.

Q2.7 If the preprocessor is able to recognized coumponds as such they will thus be included as
such in the set of features and would thus be handled as such. This is actually a way (preproces-
sor) to increase the independance between “features” of the Naive Bayes, these features no loger
corresponding to single tokens only.

Mathematically: if the coumpound is w1w2 as a feature in itself after prepocessing we now have a
p(w1w2|C) appearing in the parameters, which is no longer be assumed to be p(w1|C)p(w2|C)

Q2.8 coumpond preprocessor is a wide topic in itself (lexical acquisition), but as in many NLP
domains two main ways could be considered, which whould definitly be exploited in complement
one of the other: the statistical way and the linguistic/human knowledge way.

The most naive linguistic approach could be to add by hand coumponds to the lexicon.

For the statistical, simply extract all correlated pairs or biger tuples of word, using e.g. mutual
information, chi-square or whatever measure of correlation. This could be enhanced using human
knowledge by selecting which PoS tags could enter this correlation game (e.g. lookig for NN NN,
NN of NN etc..) but also by filtering out manually automatically extracted lists of candidates.

23/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

Exercise VII.2

You are responsible for a project aiming at providing on-line recommendations to the customers of
a on-line book selling company.

The general idea behind this recommendation system is to cluster books according to both customers
and content similarities, so as to propose books similar to the books already bought by a given
customer. The core of the recommendation system is a clustering algorithm aiming at regrouping
books likely to be appreciate by the same person. This clustering should not only be achieved
based on the purchase history of customers, but should also be refined by the content of the books
themselves. It’s that latter aspect we want to address in this exam question.

➀ Briefly explain how books could be clustered according to similar content. Give the main steps
and ideas.

“similar content”: meaning .vs. surface content or even structural content

main steps:

• preprocessing: keep semantically meaningful elements, remove less semantically impor-
tant lexical variability
Usual NLP steps for reducing lexical variability include: tokenization (removal of punc-
tuation), PoS tagging, lemmatization and suppression of grammatical ("meaningless")
words (stopwords, some well chosen PoS tags).
If lemmatization is not possible, stemming could be consisered either.
We could also have a more evolved tokenizer including Name Entity Recognition (e.g.
based on regular patterns).

• counting: frequencies, IDF, ...

• indexing / Bag of words representation: from word sequences to vectors

• compute (dis)similarities btw representations

• (choose and) use classification method.

➁ The chosen clustering algorithm is the dendrogram. What other algorithms could you propose
for the same task? Briefly review advantages and disadvantages of each of them (including
dendrograms). Which one would you recommend for the targeted task?

We are in the unsupervised case. A possible baseline altenative are the K-means.

drawbacks: what K should be use for K-mean? converges only to a local min, what linkage to
use for dendrograms

advantages: planar representation for dendrograms (could be complemented with minimal
spanning tree), K-means are incremental: can choose to stop if too long (monitor intra-class
variance, however)

Maybe the best to do should be to try both (and even more) and evaluated them, if possible, in
real context...

➂ Consider the following six "documents" (toy example):

d1 "Because cows are not sorted as they return from the fields to their home pen, cow flows
are improved."

24/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

...

d6 "What pen for what cow? A red pen for a red cow, a black pen for a black cow, a brown
pen for a brown cow, ... Understand?"

and suppose (toy example) that they are indexed only by the two words: pen and cow.

(a) Draw their vector representations.

(d1) at (1,2)
(d2) at (2,0)
(d3) at (1,1)
(d4) at (2,2)
(d5) at (4,1)
(d6) at (4,4)

pen

cow

(d1)

(d2)

(d3)

(d4)

(d5)

(d6)

(b) Give the definition of the cosine similarity. What vector’s feature(s) is it sensible to?
see lectures. Only sensible to vector angle/direction, not length, i.e. to word relative
proportions, not to absolute counts.

(c) What is the result of the dendrogram clustering algorithm on those six documents, using
the cosine similarity and single linkage?
Explain all the steps.

Hint: 5/
√

34 < 3/
√

10 < 4/
√

17.
Solution : Notice that there is absolutely no need to compute every pair of similarities!!!
Only 3 of them are useful, cf drawing (a); and even the drawing alone might be sufficient
(no computation at all)!

+------------------+
| |
| +-------+
| | |
| +------+ |

+----+ | | |
| | +----+ | |
| | | | | |

(d2) (d5) (d3) (d4) (d6) (d1)

Notice that, of course, more similar means bigger cosine!
In case you really want to do some computation, here are some values: D(2,5) = 4/

√
17,

D(3,5) = 5/
√

34, and D(1,3) = 3/
√

10.

25/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

8 Information Retrieval

Exercise VIII.1

➀ Describe the main principles of the standard vector space model for semantics.

➁ Consider the following document:

D = “the exports from Switzerland to the USA are increasing in 2006”

Propose a possible indexing set for this document. Justify your answer.

➂ What is the similarity between the above document D and

D’ = “Swiss exports have increase this year”

Justify your answer.

➃ Briefly describe the important limitation(s) of the standard vector space approach.

Explain how more sophisticated techniques such as the Distributional Semantics can be used
to circumvent this/these limitation(s).

➄ Give some concrete examples of NLP applications that might benefit from the semantic vec-
torial representations.

➅ Using the standard vector space model, does the indexing set you considered in question Q2
allow to discriminate between D and this other document:

D” = “the exports from the USA to Switzerland are increasing in 2006”

If yes: how? If not, why?

➆ Would a parser be available, how could it be used to provide a (partial) solution to the problem?

Solutions

➀ The standard approach to vector semantics can be decomposed into two mains steps:

• the indexing (or desequalization) phase: during this phase, the documents for which a
vectorial semantic representation needs to be produced, are processed with linguistic
tools in order to identify the indexing features (words, stems, lemmas, ...) they will be
associated with.
This phase results in the association with each of the documents of a set of indexing
features. Notice that, for the rest of the processing, on the sets of indexing features will
be considered. The rest of the documents will be ignored. Notice also that the sets of
indexing features are sets!... and that therefore any notion of word order is lost after the
indexing phase.
For example, if we consider the toy document collection consisting of the two following
documents:

26/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

D1 = "the results of the experiments on transgenic plants
will be issued soon."

D2 = "as soon as the experiments will be over, the laboratory
will close."

A possible output of the indexing phase for these documents might be:

D1 --> {result, experiment, transgenic, plant, issue}

D2 --> {experiment, over, laboratory, close}

but it is important to notice that the order of the word lemmas in the indexing sets is in
fact meaningless, and D1 and D2 might be equivalently indexed by:

D1 --> {experiment, issue, plant, result, transgenic}

D2 --> {close, experiment, laboratory, over}

where the indexing features have been arbitrarily put in alphabetic order.

• The second step of the vector semantics modeling is the representation phase.
During this phase, each of the indexing features that have been identified is associated
with one of the dimensions of a (usually highly dimensional) vector space and a method
must be designed to transform the indexing sets associated with the documents into vec-
tors.
A possible approach is to use binary vectors in which the 0/1 coordinates simply indi-
cated whether the corresponding indexing feature is or is not associated with a given
document.
A more sophisticated approach consists in using the occurrence statistics of the indexing
features in the documents to derive less brittle importance scores for each of the index-
ing features appearing in a document. A simple version of this approach if to use the
(usually normalized) occurrence frequency of a feature in a document as a measure of
the importance of this feature for the document. For example, a feature appearing in a
document 3 times more frequently than another will be considered as three times more
important for that document.
The importance scores can then be used as coordinates for the vectors representing the
topical content of the documents.
Once each of the documents can be represented in the indexing feature vector space, the
remaining problem is to define a similarity in this vector space in order to be able to
evaluate the semantic proximities between the documents.
The standard approach is to use the cosine similarity, defined as:
if V1 is the vector representing document D1 and V2 is the vector representing document
D2,
the semantic proximity between D1 and D2 is simply defined as:

sim(D1,D2) = cos(V1,V2) =
V1 ·V2

∥V 1∥∥V 2∥
,

where X ·Y denotes the dot-product between vector X and vector Y , and ∥X∥ =
√

X ·X
represents the norm (i.e. the length) of vector X.

27/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

Notice that this simple similarity might be further sophisticated in order to take into
account varying importance for the various dimensions of the vector space.
A possible approach is to use a weighted dot-product of the form:
for V 1 = (v11,v12, ...,v1n)

and V 2 = (v21,v22, ...,v2n)

V1 ·V 2 = ∑
n
i=1 aiv1iv2i, where the ai are some (usually positive) coefficients.

A standard approach for the weighting of the vector space dimensions is to use the "in-
verse document frequency" (i.e. fact any function f() decreasing with the document fre-
quency of an indexing feature, i.e. the inverse of the number of documents containing
the given indexing feature).
For example, if we take: ai = idf(i)2 = log(1/DF(i))2, where DF(i) is the document fre-
quency of the indexing feature associated with the i-th dimension of the vector space, we
get:
sim(D1,D2) = cos(V1’, V2’), where Vi’ = (tf(i,k).idf(k)), where tf(i,k) is the measure of
importance of the k-th indexing feature for the i-th document and idf(k) is a measure of
importance of the k-th dimension of the vector space.
This approach corresponds to the standard "tf.idf" weighting scheme.

➁ The simplest solution to produce the indexing set associated with a document is to use a
stemmer associated with stop lists allowing to ignore specific non content bearing terms. In
this case, the indexing set associated with D might be:

I(D) = {2006, export, increas, Switzerland, USA}.

A more sophisticated approach would consist in using a lemmatizer in which case, the indexing
set might be:

I(D) = {2006_NUM, export_Noun, increase_Verb, Switzerland_ProperNoun,
USA_ProperNoun}.

➂ The answer to this question depends on the indexing set considered.

One solution could be:

I(D) = {2006, export, increas, Switzerland, USA}.

I(D’) = {export, increas, Swiss, year}.

Then several similarity measures could be considered, e.g. Dice, Jacard, cosine.

For cosine: the dot product is 2 (export and increas) and the norms are
√

5 and
√

4, thus:

cos(D,D′) =
1√
5

28/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

➃ One of the important limitations of the standard vector space approach is that the use of the
cosine similarity imposes that the dimensions of the vector space are orthogonal and that
therefore the indexing features associated with the dimensions have, by construction, a null
similarity.

This is in fact a problem as it is extremely difficult to guarantee that the indexing features
associated with the dimension are indeed semantically fully uncorrelated. For example, it
is sufficient that one (or more) document(s) contain(s) the two words "car" and "vehicle" to
imply that sim("car", "vehicle") = 0 which should be interpreted as the (not very convincing)
fact that "car" and "vehicle" has nothing in common.

A possible (partial) solution for this problem is to use more sophisticated representation tech-
niques such the Distributional Semantics (DS).

In DS, the semantic content of an indexing feature does not only rely on its occurrences in
the document collection, but also on the co-occurrences of this indexing feature with other
indexing features appearing the the same documents. In fact, the vectorial representations use
in DS are a mixture of the standard occurrence vectors (as they are used in the traditional vector
space model) with the co-occurrence vectors characterizing the indexing features appearing
in the documents. Thus, even is the similarity between the occurrence vectors of "car" and
"vehicle" have, by definition, a zero similarity, in DS, the vectors representing the documents
are of the form:

V(D) = a*OccV(D) + (1-a)*CoocV(D)

and therefore, is "car" and "vehicle" share some co-occurrences (i.e. appear in documents
together with some identical words), their similarity will not be zero anymore.

➄ Any NLP application that requires the assessment of the semantic proximity between textual
entities (text, segments, words, ...) might benefit from the semantic vectorial representation.
Information retrieval is of course one of the prototypical applications illustrating the potential-
ity of the VS techniques. However, many other applications can be considered:

• automated summarization: the document to summarize is split into passages; each of the
passages is represented in a vector space and the passage(s) that is the "most central" in
the set of vector thus produced are taken as good candidates for the summary to generate;

• semantic desambiguisation: when polysemic words (such as "pen" which can be a place
to put cow or a writing instrument) are a problem –for example in machine translation–
vectorial representations can be generated for the different possible meanings of a word
(for example from machine readable disctionalires) and used to desambiguate the occur-
rences of an ambiguous word in documents;

• automated routing of messages to users: each user is represented by the vector represent-
ing the semantic content of the messages s/he has received so far, and any new incoming
message is routed only to those users the representative vector of which is enough similar
to the vector representing the content of the incoming message;

• text categorization or clustering

• ...

➅ No. The indexing sets associated with D and D’ would be exactly the same and would therefore
not allow to discriminate between these two documents (which nevertheless do not mean the
same!...).

29/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

➆ If a parser would be available, grammatical roles might be automatically associated with the
reduced indexing features. For example, specific grammatical roles could be associated with
prepositional nominal phrases such as "to the USA" or "from Switzerland" which could then
be represented as "to_USA" and "from_Switzerland".

In this case, the indexing sets associated with D and D’ would be:

I(D) = {2006, export, from_Switzerland, increase, to_USA}

and

I(D) = {2006, export, from_USA, increase, to_Switzerland}

and would allow D and D’ to be discriminated.

Exercise VIII.2

➀ What is the cosine similarity?

➁ Consider the following two documents:

D1: Dog eat dog. Eat cat too!
D2: Eat home, it’s raining cats and dogs.

What would be their cosine similarity in a typical information retrieval setup? Explain all the
steps.

➂ In a standard cosine-based tf-idf information retrieval system, can a query retrieve a document
that does not contain any of the query words? Justify your answer.

➃ Other measures than the cosine are possible. For instance, Jaccard similarity computes the
ratio between the number of words in common and the total number of occurring words (i.e.
“intersection over union”).

(a) Can this measure be used on the same document representations as the one used for the
cosine similarity can be? Justify your answer.

(b) Using the boolean representation for documents, find an example of three distinct docu-
ments d1, d2 and d3 such that d1 is closest to d2 using cosine similarity, whereas d2 and
d3 have the same similarity with respect to d1 using Jaccard similarity.
Conclude on the comparison between these two similarity measures.

➄ An information retrieval system with high precision and low recall can be useful for:

(a) Retrieving all relevant documents from a database of legal cases.
(b) Retrieving some interesting documents for a given a topic from the web.
(c) Retrieving a large set of interesting documents for a given a topic from the web.
(d) Checking the existence of a document in a very large document collection.

Choose all possible useful situations in the above list (maybe several). Justify your answer; in
particular, define the notions of precision and recall.

30/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

Solutions

➀ It’s a possible measure used for document semantic content similarity. It operated on a vector
representation of the document “meaning” and is computed as

cos(d,q) =
d ·q

||d|| ||q||
=

d ·q√
(d ·d)(q ·q)

➁ first a part-of-speech tagger might be applied in order to both filter out some stop words (and
make the distinction between can/V, to be removed, and can/N, to be kept), and prepare for
lemmatization, i.e. normalization of the surface forms of the “full words”.

On this example, typically (maybe “raining” or “rain/V”):

D1: dog eat dog eat cat
D2: eat home rain cat dog

Then a vectorial representation is build, typically a words frequency (tf) vector. In this example
(corresponding to words dog, cat, eat, rain, home):

D1: (2, 2, 1, 0, 0)
D2: (1, 1, 1, 1, 1)

Then the above cosine formula is used, leading to 5√
45

=
√

5
3 .

➂ Well... in principe NO... unless the system is urged to answer something anyway.

The numerator of the cosine will be 0 for every document (this query is orthogonal to all
documents). However, depending on how the norm of the query is computed, this should also
lead to a 0. Thus the cosine is undefined (0 over 0).

And it’s up to the system engineering details to decide what to do in such a case.

➃ (a) yes. it is indeed easy to compute intersection and union from the tf vector, for instance
simply degrade it into a binary vector.

(b) This appeared to be a difficult question. Several missed the “boolean representation” con-
straint and none was able to properly find the example.

First notice that on a boolean representation, the dot product is the same as the (cardinal of
the) intersection. Thus cosine and Jaccard have the same numerator.

Futhermore, the L2 norm correspond to the document length in the boolean case (binary vec-
tor).

Thus in the boolean case cosine reduces to |d∩q|
|d| |q| (where Jaccard is |d∩q|

|d∪q|).

Notice also that |d ∪q|= |d|+ |q|− |d ∩q|.
The fact that the two Jaccard are the same but the cosine are different implies that |d1∩d2| and
|d1 ∩d3| have to differ (easy proof).

For instance, let’s take the simplest case: |d1 ∩d2|= 1 and |d1 ∩d3|= 2.

This implies that |d1 ∪d3|= 2 |d1 ∩d2|. Since they cannot be 1 and 2, neither 2 and 4 (easy to
see that the cosine are then equal), let us try with 3 and 6, for which several examples can be
found, for instance

31/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

D1: 1 1 1 0 0 0
D2: 1 0 0 0 0 0
D3: 1 0 1 1 1 1

In this case the two Jaccard are both equal to 1/3 and the two cosines are 1/
√

3 and 2/
√

15.

➄ (b) + see lectures.

Exercise VIII.3

➀ Official NLP evaluations (especially for task such as Information Retrieval or Information
Extraction) are often carried out in the form of “evaluation campaigns”.

Precisely describe the various steps of such an evaluation campaign.

For each of the steps, clearly indicate the main goals.

Solution: The first step is to define the control task. Then you have to gather a significant
amount of data. Third you have to anotate some reference test data (the “golden truth”),
typicaly by some human experts. Then you can run your system on a typical test set (different
from both learning and tuning (a.k.a validation) set). You thus produce some quantitative
scores describing the results, which you can publish, analyse (confidence) and discuss.

➁ In an IR evaluation campaign, the following “referential” (“golden truth”) has been produced
by a set of human judges:

q1: d01 d02 d03 d04
q2: d05 d06
q3: d07 d08 d09 d10 d11
q4: d12 d13 d14 d15

where the list of document references dj associated with a query reference qi defines the set
of documents considered to be relevant for the query by the human judges.

Is such a referential easy to produce?

Indicate the various problems that might arise when one tries to produce it.

(a) task ambiguity (meaning of the text, of the question, is the solution unique?)

(b) subjectivity (see inter-anotator agreement)

(c) size matters (too small =⇒ too biaised)

(d) exhaustivity

(a) and (b) , resp. (c) and (d) are related ; the later being a consequence of the former.

➂ Consider two Information Retrieval systems S1 and S2 that produced the following outputs for
the 4 reference queries q1, q2, q3, q4:

32/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

S1: | referential:
q1: d01 d02 d03 d04 dXX dXX dXX dXX | q1: d01 d02 d03 d04
q2: d06 dXX dXX dXX dXX | q2: d05 d06
q3: dXX d07 d09 d11 dXX dXX dXX dXX dXX | q3: d07 d08 d09 d10 d11
q4: d12 dXX dXX d14 d15 dXX dXX dXX dXX | q4: d12 d13 d14 d15

S2:: | referential:
q1: dXX dXX dXX dXX d04 | q1: d01 d02 d03 d04
q2: dXX dXX d05 d06 | q2: d05 d06
q3: dXX dXX d07 d08 d09 | q3: d07 d08 d09 d10 d11
q4: dXX d13 dXX d15 | q4: d12 d13 d14 d15

where dXX refer to document references that do not appear in the referential. To make the
answer easier, we copied the referential on the right.

For each of the two systems, compute the mean Precision and Recall measures (provide the
results as fractions). Explain all the steps of your computation.

S1:
q1: P=4/8 R=4/4 q2: P=1/5 R=1/2
q3: P=3/9 R=3/5 q4: P=3/9 R=3/4

mean P(S1) = 41/120 mean R(S1) = 57/80

S2:
q1: P=1/5 R=1/4 q2: P=2/4 R=2/2
q3: P=3/5 R=3/5 q4: P=2/4 R=2/4

mean P(S1) = 9/20 mean R(S1) = 47/80

➃ Explain how it is possible to compute Precision at different Recalls.

Force the system to ouput a given number of documents (increasing) so as to increase recall
(ultimatly to recall max. when we ask the system to decidedfor all the available documents
whether they are pertinent or not)

➄ How is it possible to compute the average Precision/Recall curves? Explain in detail the
various steps of the computation.

As it would be too tedious to compute the average Precision/Recall curves by hand, plot, on a
Precision/Recall graph, the Precision and Recall values obtained in subquestion ➂ for each of
the two systems and for each of the 4 queries.

Based on the resulting curves, what is your relative evaluation of the two systems?

(1) Use average precision : for each relevant document compute the average precision for all
relevant docs below rank Rk (see formula in course).

Then we can have difference precisions for different recall and plot these values.

(3) Ideal is in the top right corner.

S1 has better recall, S2 better precision. In general S2 performs slightly better.

33/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

➅ The Precision/Recall based evaluation of the IR systems S1 and S2 above does not explicitly
take into account the order in which the documents have been retrieved by the systems. For
this purpose, another metric can be used: the Precision at k (P@k), which corresponds to the
fraction of truly relevant documents among the top k documents retrieved by a system.

Compute the average P@k values for k between 1 and 5 for the IR systems S1 and S2 above.
What additional insight do these values provide in addition to the Precision/Recall curves?

Based on these results, what is your relative evaluation of the two systems? How does it
compare to ➂?

k 1 2 3 4 5
S1 q1 1 1 1 1 4/5

q2 1 1/2 1/3 1/4 1/5
q3 0 1/2 2/3 3/4 3/5
q4 1 1/2 1/3 1/2 3/5
P 3/4 5/8 1/12 10/16 11/20

S2 q1 0 0 0 0 1/5
q2 0 0 1/3 1/2 2/5
q3 0 0 1/3 1/2 3/5
q4 0 1/2 1/3 1/2 2/5
P 0 1/8 3/12 6/16 8/20

(2) Since higherly-ranked documents should have more relevance, we can see if a system can
produce relevant results quicly in the first retrieved documents.

(3) S1 is better than S2 since it has a lot of relevant docs in the top results. This give a
completely different view wrt former evaluation. S1 is better for web-like, S2 maybe for
law-like (see Q8).

➆ It is often desirable to be able to express the performance of an NLP system in the form of a
single number, which is not the case when the Precision/Recall framework is used.

Indicate what scores can be used to convert Precision/Recall measures into a unique number.
For each score, give the corresponding formula.

F score :
(b2 +1) ·P ·R

b2 ·P+R
When b2 > 1 emphasizes P otherwise emphasies R.

Accuracy: ratio of correct results provided by the system (wrt total number of results from the
system)

Error = 1-Accuracy

➇ Give well chosen examples of applications that illustrate:

• a situation where more importance should be given to Precision;

• a situation where more importance should be given to Recall.

More importance should be given to precision in Web-like search applications because a few relevant
document out of huge amount of possibly pertinent document is enough (large enough).

Recall shall be prefered in legal or medical-like search where exhaustivity (of correct documents) is
important.

34/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

9 Lexical Semantics

Exercise IX.1

The objective of this question is to illustrate the use of a lexical semantics resource to compute
lexical cohesion.

Consider the following toy ontology providing a semantic structuring for a (small) set of nouns:
all

animate entities

human beings

man woman child

animals

cat dog mouse

non animate entities

abstract entities

freedom happiness

concrete entities

table pen mouse

➀ What is the semantic relation that has been used to build the ontology?

Cite another semantic relations that could also be useful for building lexical semantics re-
sources.

For this semantic relation, give a short definition and a concrete example.

“is a” relation: hyperonymy

other: meronymy (“part of”)

➁ The word "mouse" appears at two different places in the toy ontology. What does this mean?

What specific problems does it raise when the ontology is used?

How could such problems be solved? (just provide a sketch of explanation.)

semantic ambiguity (two different meanings, polysemy, homonymy(homography)).

Word Sense Disambiguation (WSD) through the information from the context (e.g. coehsion).

➂ Consider the following short text:

Cats are fighting dogs. There are plenty of pens on the table.

What pre-processing should be performed on this text to make it suitable for the use of the
available ontology?

identify surface forms (tokenization), maybe stopwords filtering, PoS tagging for nouns, lemma-
tization (or stemming).

➃ We want to use lexical cohesion to decide whether the provided text consists of one single
topical segment corresponding to both sentences, or of two distinct topical segments, each
corresponding to one of the sentences.

Let’s define the lexical cohesion of any set of words (in canonical form) as the average lexical
distance between all pairs of words present in the set3. The lexical distance between any two

3Here, is actually the lack of cohesion that we measure: since it’s a distance, the lower the more cohesion and the
bigger the less cohesion.

35/36

J.-C. Chappelier
& M. Rajman INTRODUCTION TO NLP (CS–431) Exercises with solutions

words is be defined as the length of a shortest path between the two words in the available
ontology.

For example, "freedom" and "happiness" are at distance 2 (length, i.e. number of links, of the
path: happiness −→ abstract entities −→ freedom), while "freedom" and "dog" are at distance
6 (length of the path: freedom −→ abstract entities −→ non animate entities −→ all −→
animate entities −→ animals −→ dog)

Compute the lexical distance between all the pairs of words present in the above text and in
the provided ontology (there are 6 such pairs).

D(cat,dog) = 2 D(cat,pen)=6 D(cat,table)=6
D(dog,pen)=6 D(dog,table)=6

D(pen,table)=2

➄ Compute the lexical cohesion of each of the two sentences, and then the lexical cohesion of
the whole text.

Based on the obtained values, what decision should be taken as far as the segmentation of the
text into topical segments is concerned?

D(S1) = 2 D(S2) = 2
D(S1,S2) = 1/6 (2+6+6+6+6+2) = 14/3

We here have a distance that we want to minimize, as the lower the distance, the more lexically
coherent is the text (closer words in the ontology). We thus here decide to segment the text
into two topical segments (one sentence each).

➅ Give some examples of NLP tasks for which lexical cohesion might be useful. Explain why.

IR: find document based on lexical cohesion wrt query words.

automatic summarization: check coherence of extracted sentences

semantic disamguation of possibles choices in spelling error correction (e.g. bag or bug for
“bxg”)

WSD

Machine translation (semantic filter)

36/36

	NLP levels
	Evaluation
	Tokenization/Lexicons/n-grams
	Part-of-Speech tagging
	Text Classification
	Information Retrieval
	Lexical Semantics

